IDEAS home Printed from https://ideas.repec.org/p/bdi/opques/qef_99_11.html
   My bibliography  Save this paper

Extreme value theory for finance: a survey

Author

Listed:
  • Marco Rocco

    (Banca d'Italia)

Abstract

Extreme value theory is concerned with the study of the asymptotical distribution of extreme events, that is to say events which are rare in frequency and huge with respect to the majority of observations. Statistical methods derived from this theory have been increasingly employed in finance, especially in the context of risk measurement. The aim of the present study is twofold. The first part delivers a critical review of the theoretical underpinnings of extreme value theory. The second part provides a survey of some major applications of extreme value theory to finance, namely its use to test different distributional assumptions for the data, Value-at-Risk and Expected Shortfall calculations, asset allocation under safety-first type constraints and the study of contagion and dependence across markets under stress conditions.

Suggested Citation

  • Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:opques:qef_99_11
    as

    Download full text from publisher

    File URL: https://www.bancaditalia.it/pubblicazioni/qef/2011-0099/QEF_99.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jansen, Dennis W & de Vries, Casper G, 1991. "On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 18-24, February.
    2. Bystrom, Hans N. E., 2005. "Extreme value theory and extremely large electricity price changes," International Review of Economics & Finance, Elsevier, vol. 14(1), pages 41-55.
    3. P. Hartmann & S. Straetmans & C. G. de Vries, 2004. "Asset Market Linkages in Crisis Periods," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 313-326, February.
    4. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    5. Novak, S.Y. & Beirlant, J., 2006. "The magnitude of a market crash can be predicted," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 453-462, February.
    6. Ulf Nielsson, 2009. "Measuring and regulating extreme risk," Journal of Financial Regulation and Compliance, Emerald Group Publishing Limited, vol. 17(2), pages 156-171, May.
    7. Ho, Lan-Chih & Burridge, Peter & Cadle, John & Theobald, Michael, 2000. "Value-at-risk: Applying the extreme value approach to Asian markets in the recent financial turmoil," Pacific-Basin Finance Journal, Elsevier, vol. 8(2), pages 249-275, May.
    8. Francis X. Diebold & Til Schuermann & John D. Stroughair, 2000. "Pitfalls and Opportunities in the Use of Extreme Value Theory in Risk Management," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 1(2), pages 30-35, January.
    9. Jondeau, Eric & Rockinger, Michael, 2003. "Testing for differences in the tails of stock-market returns," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 559-581, December.
    10. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    11. Tim Bollerslev & Viktor Todorov, 2011. "Tails, Fears, and Risk Premia," Journal of Finance, American Finance Association, vol. 66(6), pages 2165-2211, December.
    12. Stelios Bekiros & Dimitris Georgoutsos, 2007. "Extreme returns and the contagion effect between the foreign exchange and the stock market: evidence from Cyprus," Applied Financial Economics, Taylor & Francis Journals, vol. 18(3), pages 239-254.
    13. Pownall, Rachel A. J. & Koedijk, Kees G., 1999. "Capturing downside risk in financial markets: the case of the Asian Crisis," Journal of International Money and Finance, Elsevier, vol. 18(6), pages 853-870, December.
    14. H. A. Hauksson & M. Dacorogna & T. Domenig & U. Mller & G. Samorodnitsky, 2001. "Multivariate extremes, aggregation and risk estimation," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 79-95.
    15. Huisman, Ronald, et al, 2001. "Tail-Index Estimates in Small Samples," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 208-216, April.
    16. Younes Bensalah, 2000. "Steps in Applying Extreme Value Theory to Finance: A Review," Staff Working Papers 00-20, Bank of Canada.
    17. Gencay, Ramazan & Selcuk, Faruk & Ulugulyagci, Abdurrahman, 2003. "High volatility, thick tails and extreme value theory in value-at-risk estimation," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 337-356, October.
    18. Bali, Turan G., 2003. "The generalized extreme value distribution," Economics Letters, Elsevier, vol. 79(3), pages 423-427, June.
    19. Cotter, John & Dowd, Kevin, 2007. "The tail risks of FX return distributions: A comparison of the returns associated with limit orders and market orders," Finance Research Letters, Elsevier, vol. 4(3), pages 146-154, September.
    20. Hyung, Namwon & de Vries, Casper G., 2007. "Portfolio selection with heavy tails," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 383-400, June.
    21. Danielsson, Jon, 2002. "The emperor has no clothes: Limits to risk modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1273-1296, July.
    22. Haile, Fasika & Pozo, Susan, 2008. "Currency crisis contagion and the identification of transmission channels," International Review of Economics & Finance, Elsevier, vol. 17(4), pages 572-588, October.
    23. Philipp Hartmann & Stefan Straetmans & Casper de Vries, 2007. "Banking System Stability. A Cross-Atlantic Perspective," NBER Chapters, in: The Risks of Financial Institutions, pages 133-188, National Bureau of Economic Research, Inc.
    24. Pozo, Susan & Amuedo-Dorantes, Catalina, 2003. "Statistical distributions and the identification of currency crises," Journal of International Money and Finance, Elsevier, vol. 22(4), pages 591-609, August.
    25. Jalal, Amine & Rockinger, Michael, 2008. "Predicting tail-related risk measures: The consequences of using GARCH filters for non-GARCH data," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 868-877, December.
    26. Brooks, C. & Clare, A.D. & Dalle Molle, J.W. & Persand, G., 2005. "A comparison of extreme value theory approaches for determining value at risk," Journal of Empirical Finance, Elsevier, vol. 12(2), pages 339-352, March.
    27. V. Chavez-Demoulin & A. C. Davison & A. J. McNeil, 2005. "Estimating value-at-risk: a point process approach," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 227-234.
    28. Olivier V. Pictet & Michel M. Dacorogna & Ulrich A. Muller, 1996. "Hill, Bootstrap and Jackknife Estimators for Heavy Tails," Working Papers 1996-12-10, Olsen and Associates.
    29. Konstantinos Tolikas & Athanasios Koulakiotis & Richard A. Brown, 2007. "Extreme Risk and Value-at-Risk in the German Stock Market," The European Journal of Finance, Taylor & Francis Journals, vol. 13(4), pages 373-395.
    30. Danielsson, Jon & Jorgensen, Bjorn N. & Sarma, Mandira & de Vries, Casper G., 2006. "Comparing downside risk measures for heavy tailed distributions," Economics Letters, Elsevier, vol. 92(2), pages 202-208, August.
    31. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    32. Pearson, Neil D. & Smithson, Charles, 2002. "VaR: The state of play," Review of Financial Economics, Elsevier, vol. 11(3), pages 175-189.
    33. Andreas Jobst, 2007. "Operational Risk: The Sting is Still in the Tail But the Poison Dependson the Dose," IMF Working Papers 2007/239, International Monetary Fund.
    34. Jan P. A. M. Lestano, 2007. "Dating currency crises with ad hoc and extreme value-based thresholds: East Asia 1970-2002 [Dating currency crises]," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(4), pages 371-388.
    35. Thomas Werner & Christian Upper, 2004. "Time variation in the tail behavior of Bund future returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(4), pages 387-398, April.
    36. Bali, Turan G. & Neftci, Salih N., 2003. "Disturbing extremal behavior of spot rate dynamics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 455-477, September.
    37. Cotter, John, 2007. "Extreme risk in Asian equity markets," MPRA Paper 3536, University Library of Munich, Germany.
    38. Loriano Mancini & Fabio Trojani, 2011. "Robust Value at Risk Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 281-313, Spring.
    39. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    40. Namwon Hyung & Casper G. de Vries, 2005. "Portfolio Diversification Effects of Downside Risk," Tinbergen Institute Discussion Papers 05-008/2, Tinbergen Institute.
    41. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    42. Sheri Markose & Amadeo Alentorn, 2005. "Option Pricing and the Implied Tail Index with the Generalized Extreme Value (GEV) Distribution," Computing in Economics and Finance 2005 397, Society for Computational Economics.
    43. George Soros, 1999. "The International Financial Crisis," Challenge, Taylor & Francis Journals, vol. 42(2), pages 58-76, March.
    44. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    45. Pontines, Victor & Siregar, Reza, 2008. "Fundamental pitfalls of exchange market pressure-based approaches to identification of currency crises," International Review of Economics & Finance, Elsevier, vol. 17(3), pages 345-365.
    46. Turan G. Bali, 2007. "A Generalized Extreme Value Approach to Financial Risk Measurement," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1613-1649, October.
    47. Cotter, John, 2001. "Margin exceedences for European stock index futures using extreme value theory," Journal of Banking & Finance, Elsevier, vol. 25(8), pages 1475-1502, August.
    48. Starica, Catalin, 1999. "Multivariate extremes for models with constant conditional correlations," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 515-553, December.
    49. Anthony W. Ledford & Jonathan A. Tawn, 2003. "Diagnostics for dependence within time series extremes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 521-543, May.
    50. John Cotter, 2005. "Extreme risk in futures contracts," Applied Economics Letters, Taylor & Francis Journals, vol. 12(8), pages 489-492.
    51. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 53-89.
    52. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    53. Chen Zou, 2009. "Dependence structure of risk factors and diversification effects," DNB Working Papers 219, Netherlands Central Bank, Research Department.
    54. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    55. John Cotter, 2006. "Extreme Value Estimation of Boom and Crash Statistics," The European Journal of Finance, Taylor & Francis Journals, vol. 12(6-7), pages 553-566.
    56. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    57. Viviana Fernandez, 2003. "Extreme Value Theory and Value at Risk," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 18(1), pages 57-85, June.
    58. Jon Vilasuso & David Katz, 2000. "Estimates of the likelihood of extreme returns in international stock markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(1), pages 119-130.
    59. Gus Garita & Chen Zhou, 2009. "Can Open Capital Markets Help Avoid Currency Crises?," DNB Working Papers 205, Netherlands Central Bank, Research Department.
    60. Tai-Kuang Ho, 2008. "Extremal analysis of currency crises in Taiwan," Applied Economics, Taylor & Francis Journals, vol. 40(9), pages 1175-1186.
    61. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    62. Benoit Mandelbrot, 1967. "The Variation of Some Other Speculative Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 393-393.
    63. Mr. Jorge A Chan-Lau & Ms. Srobona Mitra & Ms. Li L Ong, 2007. "Contagion Risk in the International Banking System and Implications for London As a Global Financial Center," IMF Working Papers 2007/074, International Monetary Fund.
    64. John Cotter, 2004. "Downside risk for European equity markets," Applied Financial Economics, Taylor & Francis Journals, vol. 14(10), pages 707-716.
    65. Zhou, Chen, 2009. "Existence and consistency of the maximum likelihood estimator for the extreme value index," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 794-815, April.
    66. Koedijk, Kees G. & Stork, Philip A. & de Vries, Casper G., 1992. "Differences between foreign exchange rate regimes: The view from the tails," Journal of International Money and Finance, Elsevier, vol. 11(5), pages 462-473, October.
    67. Zhou, Chen, 2010. "The extent of the maximum likelihood estimator for the extreme value index," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 971-983, April.
    68. Longin, Francois, 2005. "The choice of the distribution of asset returns: How extreme value theory can help?," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 1017-1035, April.
    69. Tsourti, Zoi & Panaretos, John, 2003. "Extreme Value Index Estimators and Smoothing Alternatives: A Critical Review," MPRA Paper 6390, University Library of Munich, Germany.
    70. Younes Bensalah, 2002. "Asset Allocation Using Extreme Value Theory," Staff Working Papers 02-2, Bank of Canada.
    71. Wagner, Niklas, 2005. "Autoregressive conditional tail behavior and results on Government bond yield spreads," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 247-261.
    72. Bystrom, Hans N. E., 2004. "Managing extreme risks in tranquil and volatile markets using conditional extreme value theory," International Review of Financial Analysis, Elsevier, vol. 13(2), pages 133-152.
    73. Carmela Quintos & Zhenhong Fan & Peter C. B. Phillips, 2001. "Structural Change Tests in Tail Behaviour and the Asian Crisis," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(3), pages 633-663.
    74. Zhou, Chen, 2010. "Dependence structure of risk factors and diversification effects," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 531-540, June.
    75. Eugene F. Fama, 1963. "Mandelbrot and the Stable Paretian Hypothesis," The Journal of Business, University of Chicago Press, vol. 36, pages 420-420.
    76. Juri, Alessandro & Wuthrich, Mario V., 2002. "Copula convergence theorems for tail events," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 405-420, June.
    77. Daníelsson, Jón & Jorgensen, Bjørn N. & Samorodnitsky, Gennady & Sarma, Mandira & de Vries, Casper G., 2013. "Fat tails, VaR and subadditivity," Journal of Econometrics, Elsevier, vol. 172(2), pages 283-291.
    78. Bekiros, Stelios D. & Georgoutsos, Dimitris A., 2005. "Estimation of Value-at-Risk by extreme value and conventional methods: a comparative evaluation of their predictive performance," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(3), pages 209-228, July.
    79. Phillip Kearns & Adrian Pagan, 1997. "Estimating The Density Tail Index For Financial Time Series," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 171-175, May.
    80. Hans Dewachter & Geert Gielens, 1999. "Setting futures margins: the extremes approach," Applied Financial Economics, Taylor & Francis Journals, vol. 9(2), pages 173-181.
    81. Fasika Damte Haile & Susan Pozo, 2006. "Exchange Rate Regimes and Currency Crises: an Evaluation using Extreme Value Theory," Review of International Economics, Wiley Blackwell, vol. 14(4), pages 554-570, September.
    82. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    83. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    84. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    85. repec:adr:anecst:y:2000:i:60:p:10 is not listed on IDEAS
    86. Gencay, Ramazan & Selcuk, Faruk, 2006. "Overnight borrowing, interest rates and extreme value theory," European Economic Review, Elsevier, vol. 50(3), pages 547-563, April.
    87. Cotter, John & Longin, Francois, 2004. "Margin setting with high-frequency data," MPRA Paper 3528, University Library of Munich, Germany, revised 2006.
    88. Einmahl, J.H.J. & de Haan, L.F.M. & Krajina, A., 2009. "Estimating Extreme Bivariate Quantile Regions," Discussion Paper 2009-29, Tilburg University, Center for Economic Research.
    89. Gencay, Ramazan & Selcuk, Faruk, 2004. "Extreme value theory and Value-at-Risk: Relative performance in emerging markets," International Journal of Forecasting, Elsevier, vol. 20(2), pages 287-303.
    90. Krehbiel, Tim & Adkins, Lee C., 2008. "Extreme daily changes in U.S. Dollar London inter-bank offer rates," International Review of Economics & Finance, Elsevier, vol. 17(3), pages 397-411.
    91. Allen, Linda & Bali, Turan G., 2007. "Cyclicality in catastrophic and operational risk measurements," Journal of Banking & Finance, Elsevier, vol. 31(4), pages 1191-1235, April.
    92. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    93. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    94. Bekiros, Stelios D. & Georgoutsos, Dimitris A., 2008. "The extreme-value dependence of Asia-Pacific equity markets," Journal of Multinational Financial Management, Elsevier, vol. 18(3), pages 197-208, July.
    95. Fong Chan, Kam & Gray, Philip, 2006. "Using extreme value theory to measure value-at-risk for daily electricity spot prices," International Journal of Forecasting, Elsevier, vol. 22(2), pages 283-300.
    96. T. Ane, 2006. "Two-component extreme value distribution for Asia-Pacific stock index returns," Post-Print hal-00170789, HAL.
    97. Carlo Acerbi & Claudio Nordio & Carlo Sirtori, 2001. "Expected Shortfall as a Tool for Financial Risk Management," Papers cond-mat/0102304, arXiv.org.
    98. Thomas Lux, 2001. "The limiting extremal behaviour of speculative returns: an analysis of intra-daily data from the Frankfurt Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 11(3), pages 299-315.
    99. Marimoutou, Velayoudoum & Raggad, Bechir & Trabelsi, Abdelwahed, 2009. "Extreme Value Theory and Value at Risk: Application to oil market," Energy Economics, Elsevier, vol. 31(4), pages 519-530, July.
    100. Namwon Hyung, 2005. "Portfolio Diversification Effects of Downside Risk," Journal of Financial Econometrics, Oxford University Press, vol. 3(1), pages 107-125.
    101. Jansen, Dennis W. & Koedijk, Kees G. & de Vries, Casper G., 2000. "Portfolio selection with limited downside risk," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 247-269, November.
    102. Paul Embrechts, 2009. "Linear Correlation and EVT: Properties and Caveats," Journal of Financial Econometrics, Oxford University Press, vol. 7(1), pages 30-39, Winter.
    103. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    104. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    105. Hans Bystrom, 2006. "Using extreme value theory to estimate the likelihood of banking sector failure," The European Journal of Finance, Taylor & Francis Journals, vol. 12(4), pages 303-312.
    106. Tim Krehbiel & Lee C. Adkins, 2005. "Price risk in the NYMEX energy complex: An extreme value approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(4), pages 309-337, April.
    107. de Haan, Laurens & Resnick, Sidney I. & Rootzén, Holger & de Vries, Casper G., 1989. "Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes," Stochastic Processes and their Applications, Elsevier, vol. 32(2), pages 213-224, August.
    108. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    109. Hsieh, Ping-Hung, 2001. "Modelling the Frequency and Severity of Extreme Exchange Rate Returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(7), pages 485-499, November.
    110. Lee, Tae-Hwy & Saltoglu, Burak, 2002. "Assessing the risk forecasts for Japanese stock market," Japan and the World Economy, Elsevier, vol. 14(1), pages 63-85, January.
    111. Gupta, Anurag & Liang, Bing, 2005. "Do hedge funds have enough capital? A value-at-risk approach," Journal of Financial Economics, Elsevier, vol. 77(1), pages 219-253, July.
    112. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    113. Consigli, Giorgio, 2002. "Tail estimation and mean-VaR portfolio selection in markets subject to financial instability," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1355-1382, July.
    114. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    115. Markose, Sheri M & Alentorn, Amadeo, 2005. "The Generalized Extreme Value (GEV) Distribution, Implied Tail Index and Option Pricing," Economics Discussion Papers 3726, University of Essex, Department of Economics.
    116. Ser-Huang Poon, 2004. "Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications," The Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 581-610.
    117. Susmel, Raul, 2001. "Extreme observations and diversification in Latin American emerging equity markets," Journal of International Money and Finance, Elsevier, vol. 20(7), pages 971-986, December.
    118. Arzac, Enrique R. & Bawa, Vijay S., 1977. "Portfolio choice and equilibrium in capital markets with safety-first investors," Journal of Financial Economics, Elsevier, vol. 4(3), pages 277-288, May.
    119. Pontines, Victor & Siregar, Reza, 2007. "The Yen, the US dollar, and the trade weighted basket of currencies: Does the choice of anchor currencies matter in identifying incidences of speculative attacks?," Japan and the World Economy, Elsevier, vol. 19(2), pages 214-235, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Auray, Stéphane & Eyquem, Aurélien & Jouneau-Sion, Frédéric, 2014. "Modeling tails of aggregate economic processes in a stochastic growth model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 76-94.
    2. Muteba Mwamba, John W. & Hammoudeh, Shawkat & Gupta, Rangan, 2017. "Financial tail risks in conventional and Islamic stock markets: A comparative analysis," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 60-82.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    2. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    3. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    4. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    5. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    6. Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
    7. Timotheos Angelidis & Alexandros Benos & Stavros Degiannakis, 2007. "A robust VaR model under different time periods and weighting schemes," Review of Quantitative Finance and Accounting, Springer, vol. 28(2), pages 187-201, February.
    8. Dias, Alexandra, 2014. "Semiparametric estimation of multi-asset portfolio tail risk," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 398-408.
    9. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    10. Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    11. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
    12. Manel Youssef & Lotfi Belkacem & Khaled Mokni, 2015. "Extreme Value Theory and long-memory-GARCH Framework: Application to Stock Market," International Journal of Economics and Empirical Research (IJEER), The Economics and Social Development Organization (TESDO), vol. 3(8), pages 371-388, August.
    13. Saša ŽIKOVIÆ & Randall K. FILER, 2013. "Ranking of VaR and ES Models: Performance in Developed and Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(4), pages 327-359, August.
    14. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    16. Tolikas, Konstantinos, 2014. "Unexpected tails in risk measurement: Some international evidence," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 476-493.
    17. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    18. Karmakar, Madhusudan & Shukla, Girja K., 2015. "Managing extreme risk in some major stock markets: An extreme value approach," International Review of Economics & Finance, Elsevier, vol. 35(C), pages 1-25.
    19. S. T. M. Straetmans & W. F. C. Verschoor & C. C. P. Wolff, 2008. "Extreme US stock market fluctuations in the wake of 9|11," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 17-42.
    20. Montshioa, Keitumetse & Muteba Mwamba, John Weirstrass & Bonga-Bonga, Lumengo, 2021. "Asset allocation in extreme market conditions: a comparative analysis between developed and emerging economies," MPRA Paper 106248, University Library of Munich, Germany.

    More about this item

    Keywords

    extreme value theory; risk management; fat-tailed distributions; Value-at-Risk; systemic risk; asset allocation;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:opques:qef_99_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.