IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v54y2015icp60-71.html
   My bibliography  Save this article

A parametric alternative to the Hill estimator for heavy-tailed distributions

Author

Listed:
  • Kim, Joseph H.T.
  • Kim, Joocheol

Abstract

Despite its wide use, the Hill estimator and its plot remain to be difficult to use in Extreme Value Theory (EVT) due to substantial sampling variations in extreme sample quantiles. In this paper, we propose a new plot we call the eigenvalue plot which can be seen as a generalization of the Hill plot. The theory behind the plot is based on a heavy-tailed parametric distribution class called the scaled Log phase-type (LogPH) distributions, a generalization of the ordinary LogPH distribution class which was previously used to model insurance claims data. We show that its tail property and moment condition are well aligned with EVT. Based on our findings, we construct the eigenvalue plot from fitting a shifted PH distribution to the excess log data with a minimal phase size. Through various numerical examples we illustrate and compare our method against the Hill plot.

Suggested Citation

  • Kim, Joseph H.T. & Kim, Joocheol, 2015. "A parametric alternative to the Hill estimator for heavy-tailed distributions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 60-71.
  • Handle: RePEc:eee:jbfina:v:54:y:2015:i:c:p:60-71
    DOI: 10.1016/j.jbankfin.2014.12.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426614004014
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2014.12.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    2. Ahn, Soohan & Kim, Joseph H.T. & Ramaswami, Vaidyanathan, 2012. "A new class of models for heavy tailed distributions in finance and insurance risk," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 43-52.
    3. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    4. Bladt, Mogens, 2005. "A Review on Phase-type Distributions and their Use in Risk Theory," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 145-161, May.
    5. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    6. Ibragimov, Marat & Ibragimov, Rustam & Kattuman, Paul, 2013. "Emerging markets and heavy tails," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2546-2559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lehtomaa, Jaakko & Resnick, Sidney I., 2020. "Asymptotic independence and support detection techniques for heavy-tailed multivariate data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 262-277.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    2. Enrico Biffis & Erik Chavez, 2014. "Tail Risk in Commercial Property Insurance," Risks, MDPI, vol. 2(4), pages 1-18, September.
    3. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    6. Josep Lluís Carrion-i-Silvestre & Andreu Sansó, 2023. ""Generalized Extreme Value Approximation to the CUMSUMQ Test for Constant Unconditional Variance in Heavy-Tailed Time Series"," IREA Working Papers 202309, University of Barcelona, Research Institute of Applied Economics, revised Jul 2023.
    7. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    8. Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2012. "Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 173-193, February.
    9. Tsourti, Zoi & Panaretos, John, 2004. "Extreme-value analysis of teletraffic data," Computational Statistics & Data Analysis, Elsevier, vol. 45(1), pages 85-103, February.
    10. Caers, Jef & Dyck, Jozef Van, 1998. "Nonparametric tail estimation using a double bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 29(2), pages 191-211, December.
    11. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    12. Bernardi, Mauro & Maruotti, Antonello & Petrella, Lea, 2012. "Skew mixture models for loss distributions: A Bayesian approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 617-623.
    13. Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.
    14. Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    15. EL-NOUTY Charles & GUILLOU Armelle, 2000. "On The Bootstrap Accuracy Of The Pareto Index," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 275-290, March.
    16. Tsourti, Zoi & Panaretos, John, 2003. "Extreme Value Index Estimators and Smoothing Alternatives: A Critical Review," MPRA Paper 6390, University Library of Munich, Germany.
    17. M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
    18. Geluk, J. L. & Peng, Liang, 2000. "An adaptive optimal estimate of the tail index for MA(l) time series," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 217-227, February.
    19. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    20. Holger Drees, 2012. "Extreme value analysis of actuarial risks: estimation and model validation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 225-264, June.

    More about this item

    Keywords

    Hill estimator; Tail index; Extreme value theory; Generalized Pareto distribution; Scaled Log phase-type distribution;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • F31 - International Economics - - International Finance - - - Foreign Exchange

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:54:y:2015:i:c:p:60-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.