An efficient threshold choice for operational risk capital computation
Author
Abstract
Suggested Citation
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00544342v2
Download full text from publisher
References listed on IDEAS
- Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001.
"Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation,"
Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
- J. Danielsson & L. de Haan & L. Peng & C.G. de Vries, 1997. "Using a Bootstrap Method to choose the Sample Fraction in Tail Index Estimation," Tinbergen Institute Discussion Papers 97-016/4, Tinbergen Institute.
- Daníelsson, J. & de Haan, L.F.M. & Peng, L. & de Vries, C.G., 2000. "Using a bootstrap method to choose the sample fraction in tail index estimation," Econometric Institute Research Papers EI 2000-19/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Luceno, Alberto, 2006. "Fitting the generalized Pareto distribution to data using maximum goodness-of-fit estimators," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 904-917, November.
- Dominique Guegan & Bertrand Hassani, 2011. "A mathematical resurgence of risk management: an extreme modeling of expert opinions," Post-Print halshs-00639666, HAL.
- Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
- Dominique Guegan & Bertrand Hassani, 2011.
"A mathematical resurgence of risk management: an extreme modeling of expert opinions,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-00639666, HAL.
- Dominique Guegan & Bertrand K. Hassani, 2011. "A mathematical resurgence of risk management: an extreme modeling of expert opinions," Documents de travail du Centre d'Economie de la Sorbonne 11057, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dominique Guegan & Bertrand Hassani & Cédric Naud, 2011. "An efficient threshold choice for operational risk capital computation," Post-Print halshs-00790217, HAL.
- Dominique Guegan & Bertrand Hassani & Cédric Naud, 2010.
"An efficient threshold choice for operational risk capital computation,"
Documents de travail du Centre d'Economie de la Sorbonne
10096, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Nov 2011.
- Dominique Guegan & Bertrand Hassani & Cédric Naud, 2010. "An efficient threshold choice for operational risk capital computation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00544342, HAL.
- Dominique Guegan & Bertrand Hassani & Cédric Naud, 2011. "An efficient threshold choice for operational risk capital computation," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00790217, HAL.
- Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
- Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
- Wagner, Niklas & Marsh, Terry A., 2005.
"Measuring tail thickness under GARCH and an application to extreme exchange rate changes,"
Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
- Niklas Wagner & Terry A. Marsh, 2004. "Measuring Tail Thickness under GARCH and an Application to Extreme Exchange Rate Changes," Econometrics 0401008, University Library of Munich, Germany.
- Peng, Liang & Qi, Yongcheng, 2008. "Bootstrap approximation of tail dependence function," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1807-1824, September.
- Dominique Guegan & Bertrand K. Hassani, 2011.
"Operational risk: a Basel II++ step before Basel III,"
Documents de travail du Centre d'Economie de la Sorbonne
11053, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Dominique Guegan & Bertrand K. Hassani, 2011. "Operational risk: A Basel II++ step before Basel III," Documents de travail du Centre d'Economie de la Sorbonne 11053rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jul 2012.
- Dominique Guegan & Bertrand Hassani, 2011. "Operational risk: A Basel II++ step before Basel III," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00639484, HAL.
- Dominique Guegan & Bertrand K. Hassani, 2011. "Operational risk: A Basel II++ step before Basel III," Documents de travail du Centre d'Economie de la Sorbonne 11053r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Mar 2012.
- Dominique Guegan & Bertrand Hassani, 2012. "Operational risk : A Basel II++ step before Basel III," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00722029, HAL.
- Geluk, J. L. & Peng, Liang, 2000. "An adaptive optimal estimate of the tail index for MA(l) time series," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 217-227, February.
- Dominique Guegan & Bertrand Hassani, 2012. "Operational risk : A Basel II++ step before Basel III," PSE-Ecole d'économie de Paris (Postprint) halshs-00722029, HAL.
- Tjeerd de Vries & Alexis Akira Toda, 2022.
"Capital and Labor Income Pareto Exponents Across Time and Space,"
Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(4), pages 1058-1078, December.
- Tjeerd de Vries & Alexis Akira Toda, 2020. "Capital and Labor Income Pareto Exponents across Time and Space," Papers 2006.03441, arXiv.org, revised Jun 2021.
- Tjeerd de Vries & Alexis Akira Toda, 2021. "Capital and Labor Income Pareto Exponents across Time and Space," LIS Working papers 794, LIS Cross-National Data Center in Luxembourg.
- Holger Drees, 2012. "Extreme value analysis of actuarial risks: estimation and model validation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 225-264, June.
- Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004.
"Subsampling the distribution of diverging statistics with applications to finance,"
Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
- Patrice Bertail & Dimitris Politis & Haeffke Christian & Halbert White, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Post-Print hal-03148840, HAL.
- Dominique Guegan & Bertrand Hassani, 2012. "Operational risk : A Basel II++ step before Basel III," Post-Print halshs-00722029, HAL.
- Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.
- repec:hal:wpaper:halshs-00722029 is not listed on IDEAS
- Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.
- EL-NOUTY Charles & GUILLOU Armelle, 2000. "On The Bootstrap Accuracy Of The Pareto Index," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 275-290, March.
- Klaus Herrmann & Marius Hofert & Melina Mailhot, 2017. "Multivariate Geometric Expectiles," Papers 1704.01503, arXiv.org, revised Jan 2018.
- Dominique Guegan & Bertrand Hassani, 2011. "Operational risk: A Basel II++ step before Basel III," Post-Print halshs-00639484, HAL.
- Djamel Meraghni & Abdelhakim Necir, 2007. "Estimating the Scale Parameter of a Lévy-stable Distribution via the Extreme Value Approach," Methodology and Computing in Applied Probability, Springer, vol. 9(4), pages 557-572, December.
- Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001.
"Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation,"
Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
- J. Danielsson & L. de Haan & L. Peng & C.G. de Vries, 1997. "Using a Bootstrap Method to choose the Sample Fraction in Tail Index Estimation," Tinbergen Institute Discussion Papers 97-016/4, Tinbergen Institute.
- Daníelsson, J. & de Haan, L.F.M. & Peng, L. & de Vries, C.G., 2000. "Using a bootstrap method to choose the sample fraction in tail index estimation," Econometric Institute Research Papers EI 2000-19/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
More about this item
Keywords
Operational risk; generalized pareto distribution; Picklands estimate; Hill estimate; Expectation Maximization algorithm; Monte Carlo simulations; VaR; Risques opérationnels; distribution de Pareto généralisée; estimateur de Pickland; estimateur de Hill; algorithme EM; méthodes de Monte Carlo;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00544342. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.