IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v24y2006i2p11n5.html
   My bibliography  Save this article

On local bootstrap bandwidth choice in kernel density estimation

Author

Listed:
  • Ziegler Klaus

Abstract

Under mild regularity conditions, it is shown that bandwidth selection by minimizing the bootstrapped mean squared error (at a point x) leads to a bandwidth of the same form as that obtained by a consistent plug-in procedure. The consequences of this observation for the construction of confidence intervals are also discussed.

Suggested Citation

  • Ziegler Klaus, 2006. "On local bootstrap bandwidth choice in kernel density estimation," Statistics & Risk Modeling, De Gruyter, vol. 24(2), pages 291-301, December.
  • Handle: RePEc:bpj:strimo:v:24:y:2006:i:2:p:11:n:5
    DOI: 10.1524/stnd.2006.24.2.291
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.2006.24.2.291
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.2006.24.2.291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephan R. Sain & David W. Scott, 2002. "Zero‐Bias Locally Adaptive Density Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 441-460, September.
    2. Abramson, Ian S., 1982. "Arbitrariness of the pilot estimator in adaptive kernel methods," Journal of Multivariate Analysis, Elsevier, vol. 12(4), pages 562-567, December.
    3. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    4. Joseph Romano, 1988. "Bootstrapping the mode," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 40(3), pages 565-586, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chan, Ngai-Hang & Lee, Thomas C.M. & Peng, Liang, 2010. "On nonparametric local inference for density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 509-515, February.
    2. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    2. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    3. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    4. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    5. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    6. Adriano Z. Zambom & Ronaldo Dias, 2013. "A Review of Kernel Density Estimation with Applications to Econometrics," International Econometric Review (IER), Econometric Research Association, vol. 5(1), pages 20-42, April.
    7. Dominique Guegan & Bertrand K. Hassani, 2011. "Operational risk: a Basel II++ step before Basel III," Documents de travail du Centre d'Economie de la Sorbonne 11053, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    9. Josep Lluís Carrion-i-Silvestre & Andreu Sansó, 2023. ""Generalized Extreme Value Approximation to the CUMSUMQ Test for Constant Unconditional Variance in Heavy-Tailed Time Series"," IREA Working Papers 202309, University of Barcelona, Research Institute of Applied Economics, revised Jul 2023.
    10. Juan M. Vilar Fernández & Alejandro Quintela del Río, 1993. "Técnicas no paramétricas de estimación funcional, con observaciones dependientes," Investigaciones Economicas, Fundación SEPI, vol. 17(1), pages 143-163, January.
    11. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    12. Laurent Barras & Patrick Gagliardini & Olivier Scaillet, 2022. "Skill, Scale, and Value Creation in the Mutual Fund Industry," Journal of Finance, American Finance Association, vol. 77(1), pages 601-638, February.
    13. Max Köhler & Anja Schindler & Stefan Sperlich, 2014. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
    14. Mahfuzul Haque & Oscar Varela, 2010. "US-Thailand Bilateral Safety-first Portfolio Optimisation around the 1997 Asian Financial Crisis," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 9(2), pages 171-197, August.
    15. González-Sánchez, Mariano & Nave Pineda, Juan M., 2023. "Where is the distribution tail threshold? A tale on tail and copulas in financial risk measurement," International Review of Financial Analysis, Elsevier, vol. 86(C).
    16. Piet Groeneboom, 2021. "Estimation of the incubation time distribution for COVID‐19," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(2), pages 161-179, May.
    17. Chan, Ngai-Hang & Lee, Thomas C.M. & Peng, Liang, 2010. "On nonparametric local inference for density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 509-515, February.
    18. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    19. Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2012. "Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 173-193, February.
    20. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:24:y:2006:i:2:p:11:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.