IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v83y2015i2p263-292.html
   My bibliography  Save this article

Extreme Value Theory and Statistics of Univariate Extremes: A Review

Author

Listed:
  • M. Ivette Gomes
  • Armelle Guillou

Abstract

type="main" xml:id="insr12058-abs-0001"> Statistical issues arising in modelling univariate extremes of a random sample have been successfully used in the most diverse fields, such as biometrics, finance, insurance and risk theory. Statistics of univariate extremes (SUE), the subject to be dealt with in this review paper, has recently faced a huge development, partially because rare events can have catastrophic consequences for human activities, through their impact on the natural and constructed environments. In the last decades, there has been a shift from the area of parametric SUE, based on probabilistic asymptotic results in extreme value theory, towards semi-parametric approaches. After a brief reference to Gumbel's block methodology and more recent improvements in the parametric framework, we present an overview of the developments on the estimation of parameters of extreme events and on the testing of extreme value conditions under a semi-parametric framework. We further discuss a few challenging topics in the area of SUE. © 2014 The Authors. International Statistical Review © 2014 International Statistical Institute

Suggested Citation

  • M. Ivette Gomes & Armelle Guillou, 2015. "Extreme Value Theory and Statistics of Univariate Extremes: A Review," International Statistical Review, International Statistical Institute, vol. 83(2), pages 263-292, August.
  • Handle: RePEc:bla:istatr:v:83:y:2015:i:2:p:263-292
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/insr.12058
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jean Diebolt & Laurent Gardes & Stéphane Girard & Armelle Guillou, 2008. "Bias-reduced estimators of the Weibull tail-coefficient," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 311-331, August.
    2. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    3. M. Gomes & Fernanda Figueiredo, 2006. "Bias reduction in risk modelling: Semi-parametric quantile estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(2), pages 375-396, September.
    4. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    5. P. Zea Bermudez & M. Turkman, 2003. "Bayesian approach to parameter estimation of the generalized pareto distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 259-277, June.
    6. John H. J. Einmahl & Sander G. W. R. Smeets, 2011. "Ultimate 100‐m world records through extreme‐value theory," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 32-42, February.
    7. Armelle Guillou & Peter Hall, 2001. "A diagnostic for selecting the threshold in extreme value analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 293-305.
    8. Zhou, Chen, 2009. "Existence and consistency of the maximum likelihood estimator for the extreme value index," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 794-815, April.
    9. Chaouche, Ali & Bacro, Jean-Noel, 2004. "A statistical test procedure for the shape parameter of a generalized Pareto distribution," Computational Statistics & Data Analysis, Elsevier, vol. 45(4), pages 787-803, May.
    10. D. Walshaw, 2000. "Modelling extreme wind speeds in regions prone to hurricanes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 51-62.
    11. Deyuan Li & Liang Peng & Yongcheng Qi, 2011. "Empirical likelihood confidence intervals for the endpoint of a distribution function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 353-366, August.
    12. Einmahl, John H. J. & Magnus, Jan R., 2008. "Records in Athletics Through Extreme-Value Theory," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1382-1391.
    13. M. Ivette Gomes & Laurens De Haan & Lígia Henriques Rodrigues, 2008. "Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 31-52, February.
    14. Gomes, M. Ivette, 1989. "Generalized Gumbel and likelihood ratio test statistics in the multivariate GEV model," Computational Statistics & Data Analysis, Elsevier, vol. 7(3), pages 259-267, February.
    15. John H. J. Einmahl & Sander G. W. R. Smeets, 2011. "Ultimate 100‐m world records through extreme‐value theory," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 65(1), pages 32-42, February.
    16. Frederico Caeiro & M. Gomes, 2009. "Semi-parametric second-order reduced-bias high quantile estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 392-413, August.
    17. Zhou, Chen, 2010. "The extent of the maximum likelihood estimator for the extreme value index," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 971-983, April.
    18. Cláudia Neves & M. Fraga Alves, 2007. "Semi-parametric approach to the Hasofer–Wang and Greenwood statistics in extremes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 297-313, August.
    19. Peng, L., 1998. "Asymptotically unbiased estimators for the extreme-value index," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 107-115, June.
    20. Dierckx, Goedele & Goegebeur, Yuri & Guillou, Armelle, 2013. "An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 70-86.
    21. Peng, Liang, 2001. "Estimating the mean of a heavy tailed distribution," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 255-264, April.
    22. Vandewalle, B. & Beirlant, J. & Christmann, A. & Hubert, M., 2007. "A robust estimator for the tail index of Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6252-6268, August.
    23. Matthys, Gunther & Delafosse, Emmanuel & Guillou, Armelle & Beirlant, Jan, 2004. "Estimating catastrophic quantile levels for heavy-tailed distributions," Insurance: Mathematics and Economics, Elsevier, vol. 34(3), pages 517-537, June.
    24. Michael Falk, 1995. "LAN of extreme order statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(4), pages 693-717, December.
    25. Gomes, M. Ivette & Pestana, Dinis, 2007. "A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 280-292, March.
    26. Jan Beran & Dieter Schell & Milan Stehlík, 2014. "The harmonic moment tail index estimator: asymptotic distribution and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 193-220, February.
    27. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    28. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tjeerd de Vries & Alexis Akira Toda, 2022. "Capital and Labor Income Pareto Exponents Across Time and Space," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 68(4), pages 1058-1078, December.
    2. El Methni, Jonathan & Stupfler, Gilles, 2018. "Improved estimators of extreme Wang distortion risk measures for very heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 6(C), pages 129-148.
    3. Bertrand Groslambert & Wan-Ni Lai, 2020. "Ranking tail risk across international stock markets," Economics Bulletin, AccessEcon, vol. 40(2), pages 1756-1768.
    4. Ahmad Aboubacrène Ag & Deme El Hadji & Diop Aliou & Girard Stéphane, 2019. "Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions," Dependence Modeling, De Gruyter, vol. 7(1), pages 394-417, January.
    5. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    6. Helena Ferreira & Marta Ferreira, 2021. "Tail dependence and smoothness of time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 198-210, March.
    7. Luis Fernando Melo‐Velandia & Camilo Andrés Orozco‐Vanegas & Daniel Parra‐Amado, 2022. "Extreme weather events and high Colombian food prices: A non‐stationary extreme value approach," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 21-40, November.
    8. Frederico Caeiro & Ayana Mateus, 2023. "A New Class of Generalized Probability-Weighted Moment Estimators for the Pareto Distribution," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
    9. Gomes, M. Ivette & Henriques-Rodrigues, Lígia, 2016. "Competitive estimation of the extreme value index," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 128-135.
    10. Kan Chen & Tuoyuan Cheng, 2022. "Measuring Tail Risks," Papers 2209.07092, arXiv.org, revised Nov 2022.
    11. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2020. "Forecasting value at risk with intra-day return curves," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1023-1038.
    12. Ahmed, Hanan, 2022. "Extreme value statistics using related variables," Other publications TiSEM 246f0f13-701c-4c0d-8e09-e, Tilburg University, School of Economics and Management.
    13. Hund, Lauren & Schroeder, Benjamin & Rumsey, Kellin & Huerta, Gabriel, 2018. "Distinguishing between model- and data-driven inferences for high reliability statistical predictions," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 201-210.
    14. Emanuele Taufer & Flavio Santi & Pier Luigi Novi Inverardi & Giuseppe Espa & Maria Michela Dickson, 2020. "Extreme Value Index Estimation by Means of an Inequality Curve," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    15. Xia Yang & Jing Zhang & Wei-Xin Ren, 2018. "Threshold selection for extreme value estimation of vehicle load effect on bridges," International Journal of Distributed Sensor Networks, , vol. 14(2), pages 15501477187, February.
    16. Daouia, Abdelaati & Girard, Stéphane & Stupfler, Gilles, 2021. "ExpectHill estimation, extreme risk and heavy tails," Journal of Econometrics, Elsevier, vol. 221(1), pages 97-117.
    17. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    18. Neumann, Tobias, 2018. "Mortgages: estimating default correlation and forecasting default risk," Bank of England working papers 708, Bank of England.
    19. Lígia Henriques-Rodrigues & Frederico Caeiro & M. Ivette Gomes, 2024. "A New Class of Reduced-Bias Generalized Hill Estimators," Mathematics, MDPI, vol. 12(18), pages 1-18, September.
    20. Kathrin Kirchen & William Harbert & Jay Apt & M. Granger Morgan, 2020. "A Solar‐Centric Approach to Improving Estimates of Exposure Processes for Coronal Mass Ejections," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1020-1039, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    2. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
    3. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    4. Frederico Caeiro & M. Gomes, 2009. "Semi-parametric second-order reduced-bias high quantile estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 392-413, August.
    5. Gomes, M. Ivette & Brilhante, M. Fátima & Caeiro, Frederico & Pestana, Dinis, 2015. "A new partially reduced-bias mean-of-order p class of extreme value index estimators," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 223-237.
    6. Tsourti, Zoi & Panaretos, John, 2003. "Extreme Value Index Estimators and Smoothing Alternatives: A Critical Review," MPRA Paper 6390, University Library of Munich, Germany.
    7. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    8. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    9. Laurens Haan & Cécile Mercadier & Chen Zhou, 2016. "Adapting extreme value statistics to financial time series: dealing with bias and serial dependence," Finance and Stochastics, Springer, vol. 20(2), pages 321-354, April.
    10. Emanuele Taufer & Flavio Santi & Pier Luigi Novi Inverardi & Giuseppe Espa & Maria Michela Dickson, 2020. "Extreme Value Index Estimation by Means of an Inequality Curve," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    11. Goegebeur, Yuri & Guillou, Armelle & Verster, Andréhette, 2014. "Robust and asymptotically unbiased estimation of extreme quantiles for heavy tailed distributions," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 108-114.
    12. Araújo Santos, Paulo & Fraga Alves, Isabel & Hammoudeh, Shawkat, 2013. "High quantiles estimation with Quasi-PORT and DPOT: An application to value-at-risk for financial variables," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 487-496.
    13. Hubert, Mia & Dierckx, Goedele & Vanpaemel, Dina, 2013. "Detecting influential data points for the Hill estimator in Pareto-type distributions," Computational Statistics & Data Analysis, Elsevier, vol. 65(C), pages 13-28.
    14. Enrico Biffis & Erik Chavez, 2014. "Tail Risk in Commercial Property Insurance," Risks, MDPI, vol. 2(4), pages 1-18, September.
    15. Yuri Goegebeur & Tertius de Wet, 2012. "Estimation of the third-order parameter in extreme value statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 330-354, June.
    16. Ivanilda Cabral & Frederico Caeiro & M. Ivette Gomes, 2022. "On the comparison of several classical estimators of the extreme value index," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 51(1), pages 179-196, January.
    17. Liu, Qing & Peng, Liang & Wang, Xing, 2017. "Haezendonck–Goovaerts risk measure with a heavy tailed loss," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 28-47.
    18. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    19. Xiao Wang & Lihong Wang, 2024. "A tail index estimation for long memory processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(8), pages 947-971, November.
    20. Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:83:y:2015:i:2:p:263-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.