IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v26y1998i3p259-277.html
   My bibliography  Save this article

Bootstrap confidence intervals for tail indices

Author

Listed:
  • Caers, Jef
  • Beirlant, Jan
  • Vynckier, Petra

Abstract

No abstract is available for this item.

Suggested Citation

  • Caers, Jef & Beirlant, Jan & Vynckier, Petra, 1998. "Bootstrap confidence intervals for tail indices," Computational Statistics & Data Analysis, Elsevier, vol. 26(3), pages 259-277, January.
  • Handle: RePEc:eee:csdana:v:26:y:1998:i:3:p:259-277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(97)00033-9
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    2. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean‐Pierre Gauchi & Jean‐Charles Leblanc, 2002. "Quantitative Assessment of Exposure to the Mycotoxin Ochratoxin A in Food," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 219-234, April.
    2. Caers, Jef & Dyck, Jozef Van, 1998. "Nonparametric tail estimation using a double bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 29(2), pages 191-211, December.
    3. Thomas Werner & Christian Upper, 2004. "Time variation in the tail behavior of Bund future returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(4), pages 387-398, April.
    4. EL-NOUTY Charles & GUILLOU Armelle, 2000. "On The Bootstrap Accuracy Of The Pareto Index," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 275-290, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    2. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    3. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    4. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    5. Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2012. "Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 173-193, February.
    6. Caers, Jef & Dyck, Jozef Van, 1998. "Nonparametric tail estimation using a double bootstrap method," Computational Statistics & Data Analysis, Elsevier, vol. 29(2), pages 191-211, December.
    7. Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.
    8. Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    9. EL-NOUTY Charles & GUILLOU Armelle, 2000. "On The Bootstrap Accuracy Of The Pareto Index," Statistics & Risk Modeling, De Gruyter, vol. 18(3), pages 275-290, March.
    10. Geluk, J. L. & Peng, Liang, 2000. "An adaptive optimal estimate of the tail index for MA(l) time series," Statistics & Probability Letters, Elsevier, vol. 46(3), pages 217-227, February.
    11. Kim, Joseph H.T. & Kim, Joocheol, 2015. "A parametric alternative to the Hill estimator for heavy-tailed distributions," Journal of Banking & Finance, Elsevier, vol. 54(C), pages 60-71.
    12. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    13. Hsieh, Ping-Hung, 2002. "An exploratory first step in teletraffic data modeling: evaluation of long-run performance of parameter estimators," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 263-283, August.
    14. Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
    15. Himadri Ghosh & Prajneshu, 2011. "Statistical learning theory for fitting multimodal distribution to rainfall data: an application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(11), pages 2533-2545, January.
    16. Enrico Biffis & Erik Chavez, 2014. "Tail Risk in Commercial Property Insurance," Risks, MDPI, vol. 2(4), pages 1-18, September.
    17. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    18. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    19. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    20. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:26:y:1998:i:3:p:259-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.