IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i4p70-d533421.html
   My bibliography  Save this article

An Optimal Tail Selection in Risk Measurement

Author

Listed:
  • Małgorzata Just

    (Department of Finance and Accounting, Poznań University of Life Sciences, 60-637 Poznań, Poland)

  • Krzysztof Echaust

    (Department of Operations Research and Mathematical Economics, Poznań University of Economics and Business, 61-875 Poznań, Poland)

Abstract

The appropriate choice of a threshold level, which separates the tails of the probability distribution of a random variable from its middle part, is considered to be a very complex and challenging task. This paper provides an empirical study on various methods of the optimal tail selection in risk measurement. The results indicate which method may be useful in practice for investors and financial and regulatory institutions. Some methods that perform well in simulation studies, based on theoretical distributions, may not perform well when real data are in use. We analyze twelve methods with different parameters for forty-eight world indices using returns from the period of 2000–Q1 2020 and four sub-periods. The research objective is to compare the methods and to identify those which can be recognized as useful in risk measurement. The results suggest that only four tail selection methods, i.e., the Path Stability algorithm, the minimization of the Asymptotic Mean Squared Error approach, the automated Eyeball method with carefully selected tuning parameters and the Hall single bootstrap procedure may be useful in practical applications.

Suggested Citation

  • Małgorzata Just & Krzysztof Echaust, 2021. "An Optimal Tail Selection in Risk Measurement," Risks, MDPI, vol. 9(4), pages 1-16, April.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:4:p:70-:d:533421
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/4/70/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/4/70/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    2. Armelle Guillou & Peter Hall, 2001. "A diagnostic for selecting the threshold in extreme value analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 293-305.
    3. Zongrun Wang & Weitao Wu & Chao Chen & Yanju Zhou, 2010. "The exchange rate risk of Chinese yuan: Using VaR and ES based on extreme value theory," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(2), pages 265-282.
    4. Danielsson, J. & de Haan, L. & Peng, L. & de Vries, C. G., 2001. "Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation," Journal of Multivariate Analysis, Elsevier, vol. 76(2), pages 226-248, February.
    5. Jon Vilasuso & David Katz, 2000. "Estimates of the likelihood of extreme returns in international stock markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(1), pages 119-130.
    6. Echaust, Krzysztof, 2021. "Asymmetric tail dependence between stock market returns and implied volatility," The Journal of Economic Asymmetries, Elsevier, vol. 23(C).
    7. Danielsson, Jon & Ergun, Lerby M. & Haan, Laurens de & Vries, Casper G. de, 2016. "Tail index estimation: quantile driven threshold selection," LSE Research Online Documents on Economics 66193, London School of Economics and Political Science, LSE Library.
    8. Danielsson, Jon & Morimoto, Yuji, 2000. "Forecasting Extreme Financial Risk: A Critical Analysis of Practical Methods for the Japanese Market," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 18(2), pages 25-48, December.
    9. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    10. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    11. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    12. Drees, Holger & Kaufmann, Edgar, 1998. "Selecting the optimal sample fraction in univariate extreme value estimation," Stochastic Processes and their Applications, Elsevier, vol. 75(2), pages 149-172, July.
    13. M. Roth & G. Jongbloed & T.A. Buishand, 2016. "Threshold selection for regional peaks-over-threshold data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1291-1309, July.
    14. Longin, Francois M., 2000. "From value at risk to stress testing: The extreme value approach," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1097-1130, July.
    15. Sherzod B. Akhundjanov & Lauren Chamberlain, 2019. "The power-law distribution of agricultural land size," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(16), pages 3044-3056, December.
    16. Cifter, Atilla, 2011. "Value-at-risk estimation with wavelet-based extreme value theory: Evidence from emerging markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(12), pages 2356-2367.
    17. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    18. Fernandez, Viviana, 2005. "Risk management under extreme events," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 113-148.
    19. Hall, Peter, 1990. "Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 177-203, February.
    20. Aleksandra Łuczak & Małgorzata Just, 2020. "The positional MEF-TOPSIS method for the assessment of complex economic phenomena in territorial units," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 157-172, June.
    21. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Będowska-Sójka, Barbara & Echaust, Krzysztof & Just, Małgorzata, 2022. "The asymmetry of the Amihud illiquidity measure on the European markets: The evidence from Extreme Value Theory," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 78(C).
    2. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    3. Echaust, Krzysztof & Just, Małgorzata, 2022. "Is gold still a safe haven for stock markets? New insights through the tail thickness of portfolio return distributions," Research in International Business and Finance, Elsevier, vol. 63(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Echaust & Małgorzata Just, 2020. "Value at Risk Estimation Using the GARCH-EVT Approach with Optimal Tail Selection," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    2. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    3. Wager, Stefan, 2014. "Subsampling extremes: From block maxima to smooth tail estimation," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 335-353.
    4. Just, Małgorzata & Echaust, Krzysztof, 2024. "Cryptocurrencies against stock market risk: New insights into hedging effectiveness," Research in International Business and Finance, Elsevier, vol. 67(PA).
    5. Wagner, Niklas & Marsh, Terry A., 2005. "Measuring tail thickness under GARCH and an application to extreme exchange rate changes," Journal of Empirical Finance, Elsevier, vol. 12(1), pages 165-185, January.
    6. Benjamin R. Auer & Benjamin Mögel, 2016. "How Accurate are Modern Value-at-Risk Estimators Derived from Extreme Value Theory?," CESifo Working Paper Series 6288, CESifo.
    7. Laurens Haan & Cécile Mercadier & Chen Zhou, 2016. "Adapting extreme value statistics to financial time series: dealing with bias and serial dependence," Finance and Stochastics, Springer, vol. 20(2), pages 321-354, April.
    8. Benjamin Mögel & Benjamin R. Auer, 2018. "How accurate are modern Value-at-Risk estimators derived from extreme value theory?," Review of Quantitative Finance and Accounting, Springer, vol. 50(4), pages 979-1030, May.
    9. Łuczak, Aleksandra & Just, Małgorzata, 2021. "Sustainable development of territorial units: MCDM approach with optimal tail selection," Ecological Modelling, Elsevier, vol. 457(C).
    10. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    11. Bertail, Patrice & Haefke, Christian & Politis, D.N.Dimitris N. & White, Halbert, 2004. "Subsampling the distribution of diverging statistics with applications to finance," Journal of Econometrics, Elsevier, vol. 120(2), pages 295-326, June.
    12. Li, Longqing, 2017. "A Comparative Study of GARCH and EVT Model in Modeling Value-at-Risk," MPRA Paper 85645, University Library of Munich, Germany.
    13. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    14. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    15. Cotter, John, 2007. "Varying the VaR for unconditional and conditional environments," Journal of International Money and Finance, Elsevier, vol. 26(8), pages 1338-1354, December.
    16. Xin Chen & Zhangming Shan & Decai Tang & Biao Zhou & Valentina Boamah, 2023. "Interest rate risk of Chinese commercial banks based on the GARCH-EVT model," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-11, December.
    17. Raymond Knott & Marco Polenghi, 2006. "Assessing central counterparty margin coverage on futures contracts using GARCH models," Bank of England working papers 287, Bank of England.
    18. Madhusudan Karmakar, 2013. "Estimation of tail‐related risk measures in the Indian stock market: An extreme value approach," Review of Financial Economics, John Wiley & Sons, vol. 22(3), pages 79-85, September.
    19. Chao Huang & Jin-Guan Lin & Yan-Yan Ren, 2012. "Statistical Inferences for Generalized Pareto Distribution Based on Interior Penalty Function Algorithm and Bootstrap Methods and Applications in Analyzing Stock Data," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 173-193, February.
    20. Salhi, Khaled & Deaconu, Madalina & Lejay, Antoine & Champagnat, Nicolas & Navet, Nicolas, 2016. "Regime switching model for financial data: Empirical risk analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 148-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:4:p:70-:d:533421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.