IDEAS home Printed from https://ideas.repec.org/r/eee/jmvana/v105y2012i1p397-411.html
   My bibliography  Save this item

Principled sure independence screening for Cox models with ultra-high-dimensional covariates

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jialiang Li & Qi Zheng & Limin Peng & Zhipeng Huang, 2016. "Survival impact index and ultrahigh‐dimensional model‐free screening with survival outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1145-1154, December.
  2. Lu, Jun & Lin, Lu & Wang, WenWu, 2021. "Partition-based feature screening for categorical data via RKHS embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  3. Liu, Yanyan & Zhang, Jing & Zhao, Xingqiu, 2018. "A new nonparametric screening method for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 74-85.
  4. Xuewei Cheng & Gang Li & Hong Wang, 2024. "The concordance filter: an adaptive model-free feature screening procedure," Computational Statistics, Springer, vol. 39(5), pages 2413-2436, July.
  5. Lu, Shuiyun & Chen, Xiaolin & Xu, Sheng & Liu, Chunling, 2020. "Joint model-free feature screening for ultra-high dimensional semi-competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
  6. He, Kevin & Kang, Jian & Hong, Hyokyoung G. & Zhu, Ji & Li, Yanming & Lin, Huazhen & Xu, Han & Li, Yi, 2019. "Covariance-insured screening," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 100-114.
  7. Ke Yu & Shan Luo, 2022. "A sequential feature selection procedure for high-dimensional Cox proportional hazards model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(6), pages 1109-1142, December.
  8. Grace Y. Yi & Wenqing He & Raymond. J. Carroll, 2022. "Feature screening with large‐scale and high‐dimensional survival data," Biometrics, The International Biometric Society, vol. 78(3), pages 894-907, September.
  9. Honda, Toshio & Yabe, Ryota, 2017. "Variable selection and structure identification for varying coefficient Cox models," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 103-122.
  10. Zhang, Jing & Liu, Yanyan & Wu, Yuanshan, 2017. "Correlation rank screening for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 121-132.
  11. Jing Pan & Yuan Yu & Yong Zhou, 2018. "Nonparametric independence feature screening for ultrahigh-dimensional survival data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 821-847, October.
  12. Pan, Yingli, 2022. "Feature screening and FDR control with knockoff features for ultrahigh-dimensional right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
  13. Qiu, Debin & Ahn, Jeongyoun, 2020. "Grouped variable screening for ultra-high dimensional data for linear model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
  14. Xia, Xiaochao & Yang, Hu & Li, Jialiang, 2016. "Feature screening for generalized varying coefficient models with application to dichotomous responses," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 85-97.
  15. Jialiang Li & Tonghui Yu & Jing Lv & Mei‐Ling Ting Lee, 2021. "Semiparametric model averaging prediction for lifetime data via hazards regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1187-1209, November.
  16. Liu, Zhongkai & Song, Rui & Zeng, Donglin & Zhang, Jiajia, 2017. "Principal components adjusted variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 134-144.
  17. Yang Qu & Yu Cheng, 2023. "Volume under the ROC surface for high-dimensional independent screening with ordinal competing risk outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 735-751, October.
  18. Zhang, Shen & Zhao, Peixin & Li, Gaorong & Xu, Wangli, 2019. "Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 37-52.
  19. Jianglin Fang, 2021. "Feature screening for ultrahigh-dimensional survival data when failure indicators are missing at random," Statistical Papers, Springer, vol. 62(3), pages 1141-1166, June.
  20. Xin-Bing Kong & Zhi Liu & Yuan Yao & Wang Zhou, 2017. "Sure screening by ranking the canonical correlations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 46-70, March.
  21. Xiaolin Chen & Catherine Chunling Liu & Sheng Xu, 2021. "An efficient algorithm for joint feature screening in ultrahigh-dimensional Cox’s model," Computational Statistics, Springer, vol. 36(2), pages 885-910, June.
  22. Xue Wu & Chixiang Chen & Zheng Li & Lijun Zhang & Vernon M. Chinchilli & Ming Wang, 2024. "A three-stage approach to identify biomarker signatures for cancer genetic data with survival endpoints," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 863-883, July.
  23. Hyokyoung G. Hong & Jian Kang & Yi Li, 2018. "Conditional screening for ultra-high dimensional covariates with survival outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 45-71, January.
  24. Yu, Ke & Luo, Shan, 2024. "Rank-based sequential feature selection for high-dimensional accelerated failure time models with main and interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
  25. Dominic Edelmann & Thomas Welchowski & Axel Benner, 2022. "A consistent version of distance covariance for right‐censored survival data and its application in hypothesis testing," Biometrics, The International Biometric Society, vol. 78(3), pages 867-879, September.
  26. Chen, Xiaolin & Zhang, Yahui & Chen, Xiaojing & Liu, Yi, 2019. "A simple model-free survival conditional feature screening," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 156-160.
  27. Chen, Xiaolin & Chen, Xiaojing & Wang, Hong, 2018. "Robust feature screening for ultra-high dimensional right censored data via distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 118-138.
  28. HONDA, Toshio & 本田, 敏雄 & YABE, Ryota & 矢部, 竜太, 2017. "Variable selection and structure identification for varying coefficient Cox models," Discussion Papers 2016-05, Graduate School of Economics, Hitotsubashi University.
  29. Tian, Bing & Liu, Zili & Wang, Hong, 2022. "Non-marginal feature screening for varying coefficient competing risks model," Statistics & Probability Letters, Elsevier, vol. 190(C).
  30. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
  31. Xiaofeng Shao & Jingsi Zhang, 2014. "Martingale Difference Correlation and Its Use in High-Dimensional Variable Screening," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1302-1318, September.
  32. Park, Seyoung & Kim, Hyunjin & Lee, Eun Ryung, 2023. "Regional quantile regression for multiple responses," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
  33. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
  34. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.
  35. Jing Zhang & Guosheng Yin & Yanyan Liu & Yuanshan Wu, 2018. "Censored cumulative residual independent screening for ultrahigh-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 273-292, April.
  36. Jinfeng Xu & Wai Keung Li & Zhiliang Ying, 2020. "Variable screening for survival data in the presence of heterogeneous censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1171-1191, December.
  37. Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
  38. Liming Wang & Xingxiang Li & Xiaoqing Wang & Peng Lai, 2022. "Unified mean-variance feature screening for ultrahigh-dimensional regression," Computational Statistics, Springer, vol. 37(4), pages 1887-1918, September.
  39. Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
  40. Qu, Lianqiang & Wang, Xiaoyu & Sun, Liuquan, 2022. "Variable screening for varying coefficient models with ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
  41. Liu, Jicai & Si, Yuefeng & Niu, Yong & Zhang, Riquan, 2022. "Projection quantile correlation and its use in high-dimensional grouped variable screening," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
  42. Yang, Guangren & Zhang, Ling & Li, Runze & Huang, Yuan, 2019. "Feature screening in ultrahigh-dimensional varying-coefficient Cox model," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 284-297.
  43. Randall Reese & Guifang Fu & Geran Zhao & Xiaotian Dai & Xiaotian Li & Kenneth Chiu, 2022. "Epistasis Detection via the Joint Cumulant," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 514-532, December.
  44. Jie-Huei Wang & Chun-Hao Pan & I-Shou Chang & Chao Agnes Hsiung, 2020. "Penalized full likelihood approach to variable selection for Cox’s regression model under nested case–control sampling," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 292-314, April.
  45. Zheng, Zemin & Shi, Haiyu & Li, Yang & Yuan, Hui, 2020. "Uniform joint screening for ultra-high dimensional graphical models," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
  46. Xiaolin Chen & Yi Liu & Qihua Wang, 2019. "Joint feature screening for ultra-high-dimensional sparse additive hazards model by the sparsity-restricted pseudo-score estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1007-1031, October.
  47. Jing Zhang & Yanyan Liu & Hengjian Cui, 2021. "Model-free feature screening via distance correlation for ultrahigh dimensional survival data," Statistical Papers, Springer, vol. 62(6), pages 2711-2738, December.
  48. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
  49. Ahn, Kwang Woo & Sahr, Natasha & Kim, Soyoung, 2018. "Screening group variables in the proportional hazards model," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 20-25.
  50. Sihai Dave Zhao & Yi Li, 2014. "Score test variable screening," Biometrics, The International Biometric Society, vol. 70(4), pages 862-871, December.
  51. Ethan X. Fang & Yang Ning & Han Liu, 2017. "Testing and confidence intervals for high dimensional proportional hazards models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1415-1437, November.
  52. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
  53. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.