Variable screening for varying coefficient models with ultrahigh-dimensional survival data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2022.107498
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
- Kani Chen & Xingwei Tong, 2010. "Varying coefficient transformation models with censored data," Biometrika, Biometrika Trust, vol. 97(4), pages 969-976.
- Lu Tian & David Zucker & L.J. Wei, 2005. "On the Cox Model With Time-Varying Regression Coefficients," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 172-183, March.
- Jialiang Li & Qi Zheng & Limin Peng & Zhipeng Huang, 2016. "Survival impact index and ultrahigh‐dimensional model‐free screening with survival outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1145-1154, December.
- Hao Helen Zhang & Wenbin Lu, 2007. "Adaptive Lasso for Cox's proportional hazards model," Biometrika, Biometrika Trust, vol. 94(3), pages 691-703.
- Yuanshan Wu & Guosheng Yin, 2015. "Conditional quantile screening in ultrahigh-dimensional heterogeneous data," Biometrika, Biometrika Trust, vol. 102(1), pages 65-76.
- Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.
- Rui Song & Wenbin Lu & Shuangge Ma & X. Jessie Jeng, 2014. "Censored rank independence screening for high-dimensional survival data," Biometrika, Biometrika Trust, vol. 101(4), pages 799-814.
- Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
- Tibshirani Robert J., 2009. "Univariate Shrinkage in the Cox Model for High Dimensional Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-20, April.
- Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
- Ahn, Kwang Woo & Sahr, Natasha & Kim, Soyoung, 2018. "Screening group variables in the proportional hazards model," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 20-25.
- Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
- Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
- Anders Gorst-Rasmussen & Thomas Scheike, 2013. "Independent screening for single-index hazard rate models with ultrahigh dimensional features," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 217-246, March.
- Yang, Guangren & Zhang, Ling & Li, Runze & Huang, Yuan, 2019. "Feature screening in ultrahigh-dimensional varying-coefficient Cox model," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 284-297.
- Hyokyoung G. Hong & Jian Kang & Yi Li, 2018. "Conditional screening for ultra-high dimensional covariates with survival outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 45-71, January.
- Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiang, Zhenzhen & Guo, Hongping & Wang, Jinjuan, 2023. "Feature screening for multiple responses," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Jing Zhang & Yanyan Liu & Hengjian Cui, 2021. "Model-free feature screening via distance correlation for ultrahigh dimensional survival data," Statistical Papers, Springer, vol. 62(6), pages 2711-2738, December.
- Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
- Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
- Yang Qu & Yu Cheng, 2023. "Volume under the ROC surface for high-dimensional independent screening with ordinal competing risk outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 735-751, October.
- Chen, Xiaolin & Chen, Xiaojing & Wang, Hong, 2018. "Robust feature screening for ultra-high dimensional right censored data via distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 118-138.
- Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
- Jing Zhang & Guosheng Yin & Yanyan Liu & Yuanshan Wu, 2018. "Censored cumulative residual independent screening for ultrahigh-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 273-292, April.
- Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.
- Pan, Yingli, 2022. "Feature screening and FDR control with knockoff features for ultrahigh-dimensional right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
- Liu, Yanyan & Zhang, Jing & Zhao, Xingqiu, 2018. "A new nonparametric screening method for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 74-85.
- Xiaolin Chen & Catherine Chunling Liu & Sheng Xu, 2021. "An efficient algorithm for joint feature screening in ultrahigh-dimensional Cox’s model," Computational Statistics, Springer, vol. 36(2), pages 885-910, June.
- Jing Pan & Yuan Yu & Yong Zhou, 2018. "Nonparametric independence feature screening for ultrahigh-dimensional survival data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 821-847, October.
- Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
- Grace Y. Yi & Wenqing He & Raymond. J. Carroll, 2022. "Feature screening with large‐scale and high‐dimensional survival data," Biometrics, The International Biometric Society, vol. 78(3), pages 894-907, September.
- Lu, Shuiyun & Chen, Xiaolin & Xu, Sheng & Liu, Chunling, 2020. "Joint model-free feature screening for ultra-high dimensional semi-competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
- Tian, Bing & Liu, Zili & Wang, Hong, 2022. "Non-marginal feature screening for varying coefficient competing risks model," Statistics & Probability Letters, Elsevier, vol. 190(C).
- Jinfeng Xu & Wai Keung Li & Zhiliang Ying, 2020. "Variable screening for survival data in the presence of heterogeneous censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1171-1191, December.
- Yang, Guangren & Zhang, Ling & Li, Runze & Huang, Yuan, 2019. "Feature screening in ultrahigh-dimensional varying-coefficient Cox model," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 284-297.
- Zhang, Jing & Liu, Yanyan & Wu, Yuanshan, 2017. "Correlation rank screening for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 121-132.
More about this item
Keywords
Kernel smoothing; Survival data; Ultrahigh dimensionality; Variable screening; Varying coefficient;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:172:y:2022:i:c:s0167947322000780. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.