IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v79y2017i5p1415-1437.html
   My bibliography  Save this article

Testing and confidence intervals for high dimensional proportional hazards models

Author

Listed:
  • Ethan X. Fang
  • Yang Ning
  • Han Liu

Abstract

No abstract is available for this item.

Suggested Citation

  • Ethan X. Fang & Yang Ning & Han Liu, 2017. "Testing and confidence intervals for high dimensional proportional hazards models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1415-1437, November.
  • Handle: RePEc:bla:jorssb:v:79:y:2017:i:5:p:1415-1437
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.12224
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexandre Belloni & Victor Chernozhukov & Ying Wei, 2016. "Post-Selection Inference for Generalized Linear Models With Many Controls," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 606-619, October.
    2. Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.
    3. S. Wang & B. Nan & N. Zhu & J. Zhu, 2009. "Hierarchically penalized Cox regression with grouped variables," Biometrika, Biometrika Trust, vol. 96(2), pages 307-322.
    4. Ping-Shou Zhong & Tao Hu & Jun Li, 2015. "Tests for Coefficients in High-dimensional Additive Hazard Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 649-664, September.
    5. Jianwen Cai & Jianqing Fan & Runze Li & Haibo Zhou, 2005. "Variable selection for multivariate failure time data," Biometrika, Biometrika Trust, vol. 92(2), pages 303-316, June.
    6. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haixiang Zhang & Jian Huang & Liuquan Sun, 2022. "Projection‐based and cross‐validated estimation in high‐dimensional Cox model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 353-372, March.
    2. Kelly Van Lancker & Oliver Dukes & Stijn Vansteelandt, 2023. "Ensuring valid inference for Cox hazard ratios after variable selection," Biometrics, The International Biometric Society, vol. 79(4), pages 3096-3110, December.
    3. Xiaobo Wang & Jiayu Huang & Guosheng Yin & Jian Huang & Yuanshan Wu, 2023. "Double bias correction for high-dimensional sparse additive hazards regression with covariate measurement errors," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 115-141, January.
    4. Lv, Shaogao & You, Mengying & Lin, Huazhen & Lian, Heng & Huang, Jian, 2018. "On the sign consistency of the Lasso for the high-dimensional Cox model," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 79-96.
    5. Lu Xia & Bin Nan & Yi Li, 2023. "Debiased lasso for generalized linear models with a diverging number of covariates," Biometrics, The International Biometric Society, vol. 79(1), pages 344-357, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Joann Jasiak & Purevdorj Tuvaandorj, 2023. "Penalized Likelihood Inference with Survey Data," Papers 2304.07855, arXiv.org.
    3. Xue Wu & Chixiang Chen & Zheng Li & Lijun Zhang & Vernon M. Chinchilli & Ming Wang, 2024. "A three-stage approach to identify biomarker signatures for cancer genetic data with survival endpoints," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 863-883, July.
    4. Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
    5. Oliver Dukes & Vahe Avagyan & Stijn Vansteelandt, 2020. "Doubly robust tests of exposure effects under high‐dimensional confounding," Biometrics, The International Biometric Society, vol. 76(4), pages 1190-1200, December.
    6. Harold D. Chiang, 2018. "Many Average Partial Effects: with An Application to Text Regression," Papers 1812.09397, arXiv.org, revised Jan 2022.
    7. Honda, Toshio & Yabe, Ryota, 2017. "Variable selection and structure identification for varying coefficient Cox models," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 103-122.
    8. Ahn, Kwang Woo & Sahr, Natasha & Kim, Soyoung, 2018. "Screening group variables in the proportional hazards model," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 20-25.
    9. Jelena Bradic & Stefan Wager & Yinchu Zhu, 2019. "Sparsity Double Robust Inference of Average Treatment Effects," Papers 1905.00744, arXiv.org.
    10. Masahiro Kato, 2024. "Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects," Papers 2403.03240, arXiv.org.
    11. Joann Jasiak & Peter MacKenzie & Purevdorj Tuvaandorj, 2023. "Digital Divide: Empirical Study of CIUS 2020," Papers 2301.07855, arXiv.org, revised Oct 2024.
    12. Kaida Cai & Hua Shen & Xuewen Lu, 2022. "Adaptive bi-level variable selection for multivariate failure time model with a diverging number of covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 968-993, December.
    13. Xiaolin Chen & Yi Liu & Qihua Wang, 2019. "Joint feature screening for ultra-high-dimensional sparse additive hazards model by the sparsity-restricted pseudo-score estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1007-1031, October.
    14. repec:hum:wpaper:sfb649dp2012-061 is not listed on IDEAS
    15. Honda, Toshio & Härdle, Wolfgang Karl, 2012. "Variable selection in Cox regression models with varying coefficients," SFB 649 Discussion Papers 2012-061, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    17. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    18. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    19. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    20. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    21. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:79:y:2017:i:5:p:1415-1437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.