IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v77y2025i1d10.1007_s10463-024-00912-x.html
   My bibliography  Save this article

Model free feature screening for large scale and ultrahigh dimensional survival data

Author

Listed:
  • Yingli Pan

    (Hubei University
    Guangxi Key Laboratory of Machine Vision and Intelligent)

  • Haoyu Wang

    (Tongji University)

  • Zhan Liu

    (Hubei University)

Abstract

This paper provides a novel perspective on feature screening in the analysis of high-dimensional right-censored large-p-large-N survival data. The research introduces a distributed feature screening method known as Aggregated Distance Correlation Screening (ADCS). The proposed screening framework involves expressing the distance correlation measure as a function of multiple component parameters, each of which can be estimated in a distributed manner using a natural U-statistic from data segments. By aggregating the component estimates, a final correlation estimate is obtained, facilitating feature screening. Importantly, this approach does not necessitate any specific model specification for responses or predictors and is effective with heavy-tailed data. The study establishes the consistency of the proposed aggregated correlation estimator $$\widetilde{\omega }_{j}$$ ω ~ j under mild conditions and demonstrates the sure screening property of the ADCS. Empirical results from both simulated and real datasets confirm the efficacy and practicality of the ADCS approach proposed in this paper.

Suggested Citation

  • Yingli Pan & Haoyu Wang & Zhan Liu, 2025. "Model free feature screening for large scale and ultrahigh dimensional survival data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(1), pages 155-190, February.
  • Handle: RePEc:spr:aistmt:v:77:y:2025:i:1:d:10.1007_s10463-024-00912-x
    DOI: 10.1007/s10463-024-00912-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-024-00912-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-024-00912-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Jun Lu & Lu Lin, 2020. "Model-free conditional screening via conditional distance correlation," Statistical Papers, Springer, vol. 61(1), pages 225-244, February.
    3. Yi Chu & Lu Lin, 2020. "Conditional SIRS for nonparametric and semiparametric models by marginal empirical likelihood," Statistical Papers, Springer, vol. 61(4), pages 1589-1606, August.
    4. Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.
    5. Rui Song & Wenbin Lu & Shuangge Ma & X. Jessie Jeng, 2014. "Censored rank independence screening for high-dimensional survival data," Biometrika, Biometrika Trust, vol. 101(4), pages 799-814.
    6. Fan, Jianqing & Feng, Yang & Song, Rui, 2011. "Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 544-557.
    7. Pan, Yingli, 2022. "Feature screening and FDR control with knockoff features for ultrahigh-dimensional right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    8. Liu, Yanyan & Zhang, Jing & Zhao, Xingqiu, 2018. "A new nonparametric screening method for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 74-85.
    9. Anders Gorst-Rasmussen & Thomas Scheike, 2013. "Independent screening for single-index hazard rate models with ultrahigh dimensional features," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 217-246, March.
    10. Jing Zhang & Yanyan Liu & Hengjian Cui, 2021. "Model-free feature screening via distance correlation for ultrahigh dimensional survival data," Statistical Papers, Springer, vol. 62(6), pages 2711-2738, December.
    11. Liping Zhu & Kai Xu & Runze Li & Wei Zhong, 2017. "Projection correlation between two random vectors," Biometrika, Biometrika Trust, vol. 104(4), pages 829-843.
    12. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    2. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
    3. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    4. Jing Zhang & Guosheng Yin & Yanyan Liu & Yuanshan Wu, 2018. "Censored cumulative residual independent screening for ultrahigh-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 273-292, April.
    5. Jing Zhang & Yanyan Liu & Hengjian Cui, 2021. "Model-free feature screening via distance correlation for ultrahigh dimensional survival data," Statistical Papers, Springer, vol. 62(6), pages 2711-2738, December.
    6. Zhang, Jing & Liu, Yanyan & Wu, Yuanshan, 2017. "Correlation rank screening for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 121-132.
    7. Liu, Yanyan & Zhang, Jing & Zhao, Xingqiu, 2018. "A new nonparametric screening method for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 74-85.
    8. Chen, Xiaolin & Chen, Xiaojing & Wang, Hong, 2018. "Robust feature screening for ultra-high dimensional right censored data via distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 118-138.
    9. Jinfeng Xu & Wai Keung Li & Zhiliang Ying, 2020. "Variable screening for survival data in the presence of heterogeneous censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1171-1191, December.
    10. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.
    11. Pan, Yingli, 2022. "Feature screening and FDR control with knockoff features for ultrahigh-dimensional right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    12. Xiaolin Chen & Catherine Chunling Liu & Sheng Xu, 2021. "An efficient algorithm for joint feature screening in ultrahigh-dimensional Cox’s model," Computational Statistics, Springer, vol. 36(2), pages 885-910, June.
    13. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
    14. Jing Pan & Yuan Yu & Yong Zhou, 2018. "Nonparametric independence feature screening for ultrahigh-dimensional survival data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 821-847, October.
    15. Grace Y. Yi & Wenqing He & Raymond. J. Carroll, 2022. "Feature screening with large‐scale and high‐dimensional survival data," Biometrics, The International Biometric Society, vol. 78(3), pages 894-907, September.
    16. Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
    17. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    18. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    19. Xuewei Cheng & Gang Li & Hong Wang, 2024. "The concordance filter: an adaptive model-free feature screening procedure," Computational Statistics, Springer, vol. 39(5), pages 2413-2436, July.
    20. Xin-Bing Kong & Zhi Liu & Yuan Yao & Wang Zhou, 2017. "Sure screening by ranking the canonical correlations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 46-70, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:77:y:2025:i:1:d:10.1007_s10463-024-00912-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.