IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i3p894-907.html
   My bibliography  Save this article

Feature screening with large‐scale and high‐dimensional survival data

Author

Listed:
  • Grace Y. Yi
  • Wenqing He
  • Raymond. J. Carroll

Abstract

Data with a huge size present great challenges in modeling, inferences, and computation. In handling big data, much attention has been directed to settings with “large p small n”, and relatively less work has been done to address problems with p and n being both large, though data with such a feature have now become more accessible than before, where p represents the number of variables and n stands for the sample size. The big volume of data does not automatically ensure good quality of inferences because a large number of unimportant variables may be collected in the process of gathering informative variables. To carry out valid statistical analysis, it is imperative to screen out noisy variables that have no predictive value for explaining the outcome variable. In this paper, we develop a screening method for handling large‐sized survival data, where the sample size n is large and the dimension p of covariates is of non‐polynomial order of the sample size n, or the so‐called NP‐dimension. We rigorously establish theoretical results for the proposed method and conduct numerical studies to assess its performance. Our research offers multiple extensions of existing work and enlarges the scope of high‐dimensional data analysis. The proposed method capitalizes on the connections among useful regression settings and offers a computationally efficient screening procedure. Our method can be applied to different situations with large‐scale data including genomic data.

Suggested Citation

  • Grace Y. Yi & Wenqing He & Raymond. J. Carroll, 2022. "Feature screening with large‐scale and high‐dimensional survival data," Biometrics, The International Biometric Society, vol. 78(3), pages 894-907, September.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:894-907
    DOI: 10.1111/biom.13479
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13479
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jing Zhang & Guosheng Yin & Yanyan Liu & Yuanshan Wu, 2018. "Censored cumulative residual independent screening for ultrahigh-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 273-292, April.
    2. Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.
    3. Rui Song & Wenbin Lu & Shuangge Ma & X. Jessie Jeng, 2014. "Censored rank independence screening for high-dimensional survival data," Biometrika, Biometrika Trust, vol. 101(4), pages 799-814.
    4. Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
    5. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    6. Anders Gorst-Rasmussen & Thomas Scheike, 2013. "Independent screening for single-index hazard rate models with ultrahigh dimensional features," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 217-246, March.
    7. Laura J. van 't Veer & Hongyue Dai & Marc J. van de Vijver & Yudong D. He & Augustinus A. M. Hart & Mao Mao & Hans L. Peterse & Karin van der Kooy & Matthew J. Marton & Anke T. Witteveen & George J. S, 2002. "Gene expression profiling predicts clinical outcome of breast cancer," Nature, Nature, vol. 415(6871), pages 530-536, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.
    2. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
    3. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    4. Jing Zhang & Yanyan Liu & Hengjian Cui, 2021. "Model-free feature screening via distance correlation for ultrahigh dimensional survival data," Statistical Papers, Springer, vol. 62(6), pages 2711-2738, December.
    5. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    6. Yang Qu & Yu Cheng, 2023. "Volume under the ROC surface for high-dimensional independent screening with ordinal competing risk outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 735-751, October.
    7. Pan, Yingli, 2022. "Feature screening and FDR control with knockoff features for ultrahigh-dimensional right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    8. Xiaolin Chen & Catherine Chunling Liu & Sheng Xu, 2021. "An efficient algorithm for joint feature screening in ultrahigh-dimensional Cox’s model," Computational Statistics, Springer, vol. 36(2), pages 885-910, June.
    9. Qu, Lianqiang & Wang, Xiaoyu & Sun, Liuquan, 2022. "Variable screening for varying coefficient models with ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    10. Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.
    11. Chen, Xiaolin & Chen, Xiaojing & Wang, Hong, 2018. "Robust feature screening for ultra-high dimensional right censored data via distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 118-138.
    12. Hong, Hyokyoung G. & Zheng, Qi & Li, Yi, 2019. "Forward regression for Cox models with high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 268-290.
    13. Jing Zhang & Guosheng Yin & Yanyan Liu & Yuanshan Wu, 2018. "Censored cumulative residual independent screening for ultrahigh-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 273-292, April.
    14. Lu, Shuiyun & Chen, Xiaolin & Xu, Sheng & Liu, Chunling, 2020. "Joint model-free feature screening for ultra-high dimensional semi-competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
    15. Jinfeng Xu & Wai Keung Li & Zhiliang Ying, 2020. "Variable screening for survival data in the presence of heterogeneous censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1171-1191, December.
    16. Zhang, Jing & Liu, Yanyan & Wu, Yuanshan, 2017. "Correlation rank screening for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 121-132.
    17. Liu, Yanyan & Zhang, Jing & Zhao, Xingqiu, 2018. "A new nonparametric screening method for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 74-85.
    18. Xiaolin Chen & Yi Liu & Qihua Wang, 2019. "Joint feature screening for ultra-high-dimensional sparse additive hazards model by the sparsity-restricted pseudo-score estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1007-1031, October.
    19. Jing Pan & Yuan Yu & Yong Zhou, 2018. "Nonparametric independence feature screening for ultrahigh-dimensional survival data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 821-847, October.
    20. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:894-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.