IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v108y2017icp121-132.html
   My bibliography  Save this article

Correlation rank screening for ultrahigh-dimensional survival data

Author

Listed:
  • Zhang, Jing
  • Liu, Yanyan
  • Wu, Yuanshan

Abstract

With the recent explosion of ultrahigh-dimensional data, extensive work has been carried out for screening methods which can effectively reduce the dimensionality. However, censored survival data which often arise in clinical trials and genetic studies have been left greatly unexplored for ultrahigh-dimensional scenarios. A novel feature screening procedure is proposed for ultrahigh-dimensional survival data. Also established are the ranking consistency and the sure independent screening properties. Compared with the existing methods, the proposed screening procedure is invariant to the monotone transformation, known or unknown, of the response. Moreover, it can be readily applied to ultrahigh-dimensional complete data when the censoring rate is zero. Simulation studies demonstrate that the proposed procedure exhibits favorably in comparisons with the existing ones. As an illustration, the proposed method is applied to the mantle cell lymphoma study.

Suggested Citation

  • Zhang, Jing & Liu, Yanyan & Wu, Yuanshan, 2017. "Correlation rank screening for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 121-132.
  • Handle: RePEc:eee:csdana:v:108:y:2017:i:c:p:121-132
    DOI: 10.1016/j.csda.2016.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316302699
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Yuanshan Wu & Guosheng Yin, 2015. "Conditional quantile screening in ultrahigh-dimensional heterogeneous data," Biometrika, Biometrika Trust, vol. 102(1), pages 65-76.
    3. Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.
    4. Rui Song & Wenbin Lu & Shuangge Ma & X. Jessie Jeng, 2014. "Censored rank independence screening for high-dimensional survival data," Biometrika, Biometrika Trust, vol. 101(4), pages 799-814.
    5. Fan, Jianqing & Feng, Yang & Song, Rui, 2011. "Nonparametric Independence Screening in Sparse Ultra-High-Dimensional Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 544-557.
    6. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    7. Runze Li & Wei Zhong & Liping Zhu, 2012. "Feature Screening via Distance Correlation Learning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1129-1139, September.
    8. Li‐Ping Zhu & Li‐Xing Zhu, 2009. "On distribution‐weighted partial least squares with diverging number of highly correlated predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 525-548, April.
    9. Anders Gorst-Rasmussen & Thomas Scheike, 2013. "Independent screening for single-index hazard rate models with ultrahigh dimensional features," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 217-246, March.
    10. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Pan & Yuan Yu & Yong Zhou, 2018. "Nonparametric independence feature screening for ultrahigh-dimensional survival data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 821-847, October.
    2. Pan, Yingli, 2022. "Feature screening and FDR control with knockoff features for ultrahigh-dimensional right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    3. Jianglin Fang, 2021. "Feature screening for ultrahigh-dimensional survival data when failure indicators are missing at random," Statistical Papers, Springer, vol. 62(3), pages 1141-1166, June.
    4. Tang, Niansheng & Xia, Linli & Yan, Xiaodong, 2019. "Feature screening in ultrahigh-dimensional partially linear models with missing responses at random," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 208-227.
    5. Xiaolin Chen & Catherine Chunling Liu & Sheng Xu, 2021. "An efficient algorithm for joint feature screening in ultrahigh-dimensional Cox’s model," Computational Statistics, Springer, vol. 36(2), pages 885-910, June.
    6. Dominic Edelmann & Thomas Welchowski & Axel Benner, 2022. "A consistent version of distance covariance for right‐censored survival data and its application in hypothesis testing," Biometrics, The International Biometric Society, vol. 78(3), pages 867-879, September.
    7. Chen, Xiaolin & Zhang, Yahui & Chen, Xiaojing & Liu, Yi, 2019. "A simple model-free survival conditional feature screening," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 156-160.
    8. Chen, Xiaolin & Chen, Xiaojing & Wang, Hong, 2018. "Robust feature screening for ultra-high dimensional right censored data via distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 118-138.
    9. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    10. Xiaolin Chen & Yi Liu & Qihua Wang, 2019. "Joint feature screening for ultra-high-dimensional sparse additive hazards model by the sparsity-restricted pseudo-score estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1007-1031, October.
    11. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    12. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Wei & Wang, Jiping & Chen, Xiaolin, 2021. "Censored mean variance sure independence screening for ultrahigh dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    2. Jing Zhang & Guosheng Yin & Yanyan Liu & Yuanshan Wu, 2018. "Censored cumulative residual independent screening for ultrahigh-dimensional survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 273-292, April.
    3. Liu, Yanyan & Zhang, Jing & Zhao, Xingqiu, 2018. "A new nonparametric screening method for ultrahigh-dimensional survival data," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 74-85.
    4. Chen, Xiaolin & Chen, Xiaojing & Wang, Hong, 2018. "Robust feature screening for ultra-high dimensional right censored data via distance correlation," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 118-138.
    5. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    6. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.
    7. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
    8. Jing Zhang & Yanyan Liu & Hengjian Cui, 2021. "Model-free feature screening via distance correlation for ultrahigh dimensional survival data," Statistical Papers, Springer, vol. 62(6), pages 2711-2738, December.
    9. Jing Pan & Yuan Yu & Yong Zhou, 2018. "Nonparametric independence feature screening for ultrahigh-dimensional survival data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(7), pages 821-847, October.
    10. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
    11. He, Yong & Zhang, Liang & Ji, Jiadong & Zhang, Xinsheng, 2019. "Robust feature screening for elliptical copula regression model," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 568-582.
    12. Min Chen & Yimin Lian & Zhao Chen & Zhengjun Zhang, 2017. "Sure explained variability and independence screening," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 849-883, October.
    13. Jinfeng Xu & Wai Keung Li & Zhiliang Ying, 2020. "Variable screening for survival data in the presence of heterogeneous censoring," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1171-1191, December.
    14. Jianglin Fang, 2021. "Feature screening for ultrahigh-dimensional survival data when failure indicators are missing at random," Statistical Papers, Springer, vol. 62(3), pages 1141-1166, June.
    15. Pan, Yingli, 2022. "Feature screening and FDR control with knockoff features for ultrahigh-dimensional right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    16. Zhang, Shen & Zhao, Peixin & Li, Gaorong & Xu, Wangli, 2019. "Nonparametric independence screening for ultra-high dimensional generalized varying coefficient models with longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 37-52.
    17. Guo, Chaohui & Lv, Jing & Wu, Jibo, 2021. "Composite quantile regression for ultra-high dimensional semiparametric model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    18. Xiaolin Chen & Yi Liu & Qihua Wang, 2019. "Joint feature screening for ultra-high-dimensional sparse additive hazards model by the sparsity-restricted pseudo-score estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1007-1031, October.
    19. Xiangyu Wang & Chenlei Leng, 2016. "High dimensional ordinary least squares projection for screening variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 589-611, June.
    20. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:108:y:2017:i:c:p:121-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.