IDEAS home Printed from https://ideas.repec.org/r/eee/insuma/v70y2016icp205-215.html
   My bibliography  Save this item

Generalized linear models for dependent frequency and severity of insurance claims

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Post-Print hal-02891046, HAL.
  2. Park, Sojung C. & Kim, Joseph H.T. & Ahn, Jae Youn, 2018. "Does hunger for bonuses drive the dependence between claim frequency and severity?," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 32-46.
  3. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
  4. Shengkun Xie & Anna T. Lawniczak, 2018. "Estimating Major Risk Factor Relativities in Rate Filings Using Generalized Linear Models," IJFS, MDPI, vol. 6(4), pages 1-14, October.
  5. Omerašević Amela & Selimović Jasmina, 2020. "Classification Ratemaking Using Decision Tree in the Insurance Market of Bosnia and Herzegovina," South East European Journal of Economics and Business, Sciendo, vol. 15(2), pages 124-139, December.
  6. Vernic, Raluca & Bolancé, Catalina & Alemany, Ramon, 2022. "Sarmanov distribution for modeling dependence between the frequency and the average severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 111-125.
  7. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
  8. Goffard, Pierre-Olivier & Laub, Patrick J., 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 350-371.
  9. Dong-Young Lim, 2021. "A Neural Frequency-Severity Model and Its Application to Insurance Claims," Papers 2106.10770, arXiv.org, revised Feb 2024.
  10. Tatjana Miljkovic & Daniel Fernández, 2018. "On Two Mixture-Based Clustering Approaches Used in Modeling an Insurance Portfolio," Risks, MDPI, vol. 6(2), pages 1-18, May.
  11. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
  12. Xu, Shuzhe & Zhang, Chuanlong & Hong, Don, 2022. "BERT-based NLP techniques for classification and severity modeling in basic warranty data study," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 57-67.
  13. Mengyu Yu & Mazie Krehbiel & Samantha Thompson & Tatjana Miljkovic, 2020. "An exploration of gender gap using advanced data science tools: actuarial research community," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(2), pages 767-789, May.
  14. Peng Shi & Glenn M. Fung & Daniel Dickinson, 2022. "Assessing hail risk for property insurers with a dependent marked point process," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 302-328, January.
  15. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
  16. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
  17. Roland R. Ramsahai, 2020. "Connecting actuarial judgment to probabilistic learning techniques with graph theory," Papers 2007.15475, arXiv.org.
  18. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
  19. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  20. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
  21. Wang, Yunyun & Oka, Tatsushi & Zhu, Dan, 2023. "Bivariate distribution regression with application to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 215-232.
  22. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
  23. Mary Kelly & Zilin Wang, 2020. "A data set for modeling claims processes—TSA claims data," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 23(3), pages 269-276, September.
  24. Wenhui Zhang & Yongmin Su & Ruimin Ke & Xinqiang Chen, 2018. "Evaluating the influential priority of the factors on insurance loss of public transit," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-11, January.
  25. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
  26. Gian Paolo Clemente & Pierpaolo Marano, 2020. "The broker model for peer-to-peer insurance: an analysis of its value," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(3), pages 457-481, July.
  27. Tingting Chen & Anthony Francis Desmond & Peter Adamic, 2023. "Generalized Additive Modelling of Dependent Frequency and Severity Distributions for Aggregate Claims," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 12(4), pages 1-1.
  28. Baak, M. & Koopman, R. & Snoek, H. & Klous, S., 2020. "A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
  29. Oh, Rosy & Lee, Youngju & Zhu, Dan & Ahn, Jae Youn, 2021. "Predictive risk analysis using a collective risk model: Choosing between past frequency and aggregate severity information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 127-139.
  30. Salazar García, Juan Fernando & Guzmán Aguilar, Diana Sirley & Hoyos Nieto, Daniel Arturo, 2023. "Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia [Modelling of an insurance premium through the application," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 35(1), pages 330-359, June.
  31. Yuan, Meng & Lu, Dawei, 2023. "Asymptotics for a time-dependent by-claim model with dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 120-141.
  32. Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).
  33. Gao, Guangyuan & Li, Jiahong, 2023. "Dependence modeling of frequency-severity of insurance claims using waiting time," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 29-51.
  34. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
  35. Laudagé, Christian & Desmettre, Sascha & Wenzel, Jörg, 2019. "Severity modeling of extreme insurance claims for tariffication," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 77-92.
  36. Xiaoshan Su & Manying Bai, 2020. "Stochastic gradient boosting frequency-severity model of insurance claims," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
  37. Övgücan Karadağ Erdemir, 2023. "A Comparative Perspective on Multivariate Modeling of Insurance Compensation Payments with Regression-Based and Copula-Based Models," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 161-171, December.
  38. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.