Bivariate Distribution Regression with Application to Insurance Data
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Wang, Yunyun & Oka, Tatsushi & Zhu, Dan, 2023. "Bivariate distribution regression with application to insurance data," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 215-232.
References listed on IDEAS
- Nilay Noyan & Gábor Rudolf, 2013. "Optimization with Multivariate Conditional Value-at-Risk Constraints," Operations Research, INFORMS, vol. 61(4), pages 990-1013, August.
- Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013.
"Inference on Counterfactual Distributions,"
Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2008. "Inference On Counterfactual Distributions," Boston University - Department of Economics - Working Papers Series wp2008-005, Boston University - Department of Economics.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on Counterfactual Distributions," Papers 0904.0951, arXiv.org, revised Sep 2013.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers 05/12, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers 17/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers CWP17/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers CWP09/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers 09/09, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers CWP05/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- repec:taf:jnlbes:v:30:y:2012:i:2:p:265-274 is not listed on IDEAS
- Hall, Peter & Wolff, Rodney C. L. & Yao, Qiwei, 1999. "Methods for estimating a conditional distribution function," LSE Research Online Documents on Economics 6631, London School of Economics and Political Science, LSE Library.
- V. Chernozhukov & I. Fernández-Val & A. Galichon, 2009.
"Improving point and interval estimators of monotone functions by rearrangement,"
Biometrika, Biometrika Trust, vol. 96(3), pages 559-575.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2008. "Improving Point and Interval Estimates of Monotone Functions by Rearrangement," Papers 0806.4730, arXiv.org, revised Nov 2008.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," Post-Print hal-03596970, HAL.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2008. "Improving point and interval estimates of monotone functions by rearrangement," CeMMAP working papers CWP17/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2009. "Improving point and interval estimators of monotone functions by rearrangement," SciencePo Working papers Main hal-03596970, HAL.
- Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
- Nadja Klein & Torsten Hothorn & Luisa Barbanti & Thomas Kneib, 2022. "Multivariate conditional transformation models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 116-142, March.
- Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024.
"Network and panel quantile effects via distribution regression,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2018. "Network and panel quantile effects via distribution regression," CeMMAP working papers CWP21/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2020. "Network and Panel Quantile Effects Via Distribution Regression," CeMMAP working papers CWP27/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2018. "Network and panel quantile effects via distribution regression," CeMMAP working papers CWP70/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Iv'an Fern'andez-Val & Martin Weidner, 2018. "Network and Panel Quantile Effects Via Distribution Regression," Papers 1803.08154, arXiv.org, revised Jun 2020.
- Christoph Rothe & Dominik Wied, 2013.
"Misspecification Testing in a Class of Conditional Distributional Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
- Rothe, Christoph & Wied, Dominik, 2012. "Misspecification Testing in a Class of Conditional Distributional Models," IZA Discussion Papers 6364, Institute of Labor Economics (IZA).
- Roger Koenker & Samantha Leorato & Franco Peracchi, 2013.
"Distributional vs. Quantile Regression,"
CEIS Research Paper
300, Tor Vergata University, CEIS, revised 17 Dec 2013.
- Roger Koenker & Samantha Leorato & Franco Peracchi, 2013. "Distributional vs. Quantile Regression," EIEF Working Papers Series 1329, Einaudi Institute for Economics and Finance (EIEF), revised Dec 2013.
- Claudia Czado & Rainer Kastenmeier & Eike Brechmann & Aleksey Min, 2012. "A mixed copula model for insurance claims and claim sizes," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2012(4), pages 278-305.
- Kato, Kengo, 2009. "Asymptotics for argmin processes: Convexity arguments," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1816-1829, September.
- Lu Yang & Edward W. Frees & Zhengjun Zhang, 2020. "Nonparametric Estimation of Copula Regression Models With Discrete Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 707-720, April.
- Chib, Siddhartha & Winkelmann, Rainer, 2001. "Markov Chain Monte Carlo Analysis of Correlated Count Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 428-435, October.
- Tang, Qihe & Tong, Zhiwei & Xun, Li, 2022. "Insurance risk analysis of financial networks vulnerable to a shock," European Journal of Operational Research, Elsevier, vol. 301(2), pages 756-771.
- Peng Shi & Lu Yang, 2018. "Pair Copula Constructions for Insurance Experience Rating," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 122-133, January.
- Gueorguieva R. V. & Agresti A., 2001. "A Correlated Probit Model for Joint Modeling of Clustered Binary and Continuous Responses," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1102-1112, September.
- Zimmer, David M. & Trivedi, Pravin K., 2006. "Using Trivariate Copulas to Model Sample Selection and Treatment Effects: Application to Family Health Care Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 63-76, January.
- Jonas Meier, 2020. "Multivariate Distribution Regression," Diskussionsschriften dp2023, Universitaet Bern, Departement Volkswirtschaft.
- White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
- Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yunyun Wang & Tatsushi Oka & Dan Zhu, 2023. "Distributional Vector Autoregression: Eliciting Macro and Financial Dependence," Papers 2303.04994, arXiv.org.
- Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yunyun Wang & Tatsushi Oka & Dan Zhu, 2023. "Distributional Vector Autoregression: Eliciting Macro and Financial Dependence," Papers 2303.04994, arXiv.org.
- Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
- Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org.
- Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013.
"Inference on Counterfactual Distributions,"
Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2008. "Inference On Counterfactual Distributions," Boston University - Department of Economics - Working Papers Series wp2008-005, Boston University - Department of Economics.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers 05/12, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers 17/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers CWP17/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers CWP09/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on Counterfactual Distributions," Papers 0904.0951, arXiv.org, revised Sep 2013.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers 09/09, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers CWP05/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Franco Peracchi & Samantha Leorato, 2015.
"Shape Regressions,"
Working Papers
gueconwpa~15-15-06, Georgetown University, Department of Economics.
- Samantha Leorato & Franco Peracchi, 2015. "Shape Regressions," EIEF Working Papers Series 1506, Einaudi Institute for Economics and Finance (EIEF), revised Jul 2015.
- Paul Redmond & Karina Doorley & Seamus McGuinness, 2021.
"The impact of a minimum wage change on the distribution of wages and household income,"
Oxford Economic Papers, Oxford University Press, vol. 73(3), pages 1034-1056.
- Redmond, Paul & Doorley, Karina & McGuinness, Seamus, 2020. "The Impact of a Minimum Wage Change on the Distribution of Wages and Household Income," IZA Discussion Papers 12914, Institute of Labor Economics (IZA).
- Richard Spady & Sami Stouli, 2020. "Gaussian Transforms Modeling and the Estimation of Distributional Regression Functions," Papers 2011.06416, arXiv.org.
- Yuanhua Feng & Wolfgang Karl Härdle, 2021. "Uni- and multivariate extensions of the sinh-arcsinh normal distribution applied to distributional regression," Working Papers CIE 142, Paderborn University, CIE Center for International Economics.
- Kneib, Thomas & Silbersdorff, Alexander & Säfken, Benjamin, 2023. "Rage Against the Mean – A Review of Distributional Regression Approaches," Econometrics and Statistics, Elsevier, vol. 26(C), pages 99-123.
- Yang Lu, 2019.
"Flexible (panel) regression models for bivariate count–continuous data with an insurance application,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
- Yang Lu, 2019. "Flexible (panel) regression models for bivariate count-continuous data with an insurance application," Post-Print hal-02419024, HAL.
- Song, Song & Ritov, Ya’acov & Härdle, Wolfgang K., 2012. "Bootstrap confidence bands and partial linear quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 244-262.
- Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023.
"Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
- Liang Jiang & Xiaobin Liu & Peter C.B. Phillips & Yichong Zhang, 2021. "Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations," Cowles Foundation Discussion Papers 2288, Cowles Foundation for Research in Economics, Yale University.
- Liang Jiang & Peter C. B. Phillips & Yubo Tao & Yichong Zhang, 2021. "Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations," Papers 2105.14752, arXiv.org, revised Sep 2022.
- Victor Chernozhukov & Iv·n Fern·ndez-Val & Alfred Galichon, 2010.
"Quantile and Probability Curves Without Crossing,"
Econometrica, Econometric Society, vol. 78(3), pages 1093-1125, May.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and probability curves without crossing," CeMMAP working papers CWP10/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile And Probability Curves Without Crossing," Boston University - Department of Economics - Working Papers Series WP2007-011, Boston University - Department of Economics.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," Post-Print hal-01052958, HAL.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2007. "Quantile and Probability Curves Without Crossing," Papers 0704.3649, arXiv.org, revised Jul 2014.
- Victor Chernozhukov & Ivan Fernandez-Val & Alfred Galichon, 2010. "Quantile and Probability Curves without Crossing," SciencePo Working papers Main hal-01052958, HAL.
- Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
- Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020.
"Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2016. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers CWP35/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chernozhukov, Victor & Fernández-Val, Iván & Melly, Blaise & Wüthrich, Kaspar, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," University of California at San Diego, Economics Working Paper Series qt5zm6m9rq, Department of Economics, UC San Diego.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2016. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers 35/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2017. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers 23/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2017. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers CWP23/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar W thrich, 2016. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Diskussionsschriften dp1607, Universitaet Bern, Departement Volkswirtschaft.
- Victor Chernozhukov & Iv'an Fern'andez-Val & Blaise Melly & Kaspar Wuthrich, 2016. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Papers 1608.05142, arXiv.org, revised Aug 2018.
- Frandsen, Brigham R. & Frölich, Markus & Melly, Blaise, 2012.
"Quantile treatment effects in the regression discontinuity design,"
Journal of Econometrics, Elsevier, vol. 168(2), pages 382-395.
- Frölich, Markus & Melly, Blaise, 2008. "Quantile Treatment Effects in the Regression Discontinuity Design," IZA Discussion Papers 3638, Institute of Labor Economics (IZA).
- Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024.
"Network and panel quantile effects via distribution regression,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2018. "Network and panel quantile effects via distribution regression," CeMMAP working papers CWP21/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2020. "Network and Panel Quantile Effects Via Distribution Regression," CeMMAP working papers CWP27/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Iv'an Fern'andez-Val & Martin Weidner, 2018. "Network and Panel Quantile Effects Via Distribution Regression," Papers 1803.08154, arXiv.org, revised Jun 2020.
- Victor Chernozhukov & Ivan Fernandez-Val & Martin Weidner, 2018. "Network and panel quantile effects via distribution regression," CeMMAP working papers CWP70/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ekaterina Selezneva & Philippe Van Kerm, 2013.
"Inequality-Adjusted Gender Wage Differentials in Germany,"
SOEPpapers on Multidisciplinary Panel Data Research
579, DIW Berlin, The German Socio-Economic Panel (SOEP).
- Ekaterina Selezneva & Philippe Van Kerm, 2013. "Inequality-adjusted gender wage differentials in Germany," Working Papers 334, Leibniz Institut für Ost- und Südosteuropaforschung (Institute for East and Southeast European Studies).
- SELEZNEVA Ekaterina & VAN KERM Philippe, 2013. "Inequality-adjusted gender wage differentials in Germany," LISER Working Paper Series 2013-18, Luxembourg Institute of Socio-Economic Research (LISER).
- Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
- Sun, Yiguo, 2006.
"A Consistent Nonparametric Equality Test Of Conditional Quantile Functions,"
Econometric Theory, Cambridge University Press, vol. 22(4), pages 614-632, August.
- Sun, Y., 2003. "A Consistent Nonparametric Equality Test of Conditional Quantile Functions," Working Papers 2003-10, University of Guelph, Department of Economics and Finance.
More about this item
JEL classification:
- C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
- C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
- G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
NEP fields
This paper has been announced in the following NEP Reports:- NEP-DCM-2022-04-25 (Discrete Choice Models)
- NEP-ECM-2022-04-25 (Econometrics)
- NEP-IAS-2022-04-25 (Insurance Economics)
- NEP-RMG-2022-04-25 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2203.12228. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.