IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v35y2023i1p330-359.html
   My bibliography  Save this article

Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia
[Modelling of an insurance premium through the application of actuarial methods, failure theory and Black-Scholes in the health in Colombia]

Author

Listed:
  • Salazar García, Juan Fernando

    (Universidad de Medellín (Colombia))

  • Guzmán Aguilar, Diana Sirley

    (Universidad de Medellín (Colombia))

  • Hoyos Nieto, Daniel Arturo

    (Universidad de Medellín (Colombia))

Abstract

La prima de la tarifación en un seguro para el sector salud está influenciada por la siniestralidad de sus suscriptores, lo que genera altos niveles de fluctuación e incertidumbre. El objetivo de esta investigación es la aplicación de los modelos actuariales riesgo individual, riesgo colectivo y modelo de credibilidad, junto con la aplicación del modelo tecnológico de tasa de falla y el modelo de opciones financieras de Black-Scholes como herramientas de estimación de la prima de la tarifación para la industria aseguradora y de la salud en Colombia. A partir de las reclamaciones y de los costos totales de los siniestros históricos se aplican los modelos que permita asegurar primas óptimas para una cobertura a las pérdidas agregadas de los siniestros. Al final, se comparan dichos modelos y se aproxima a una definición de un método óptimo. La importancia de la investigación radica en el alto compromiso, responsabilidad e incidencia financiera de gestionar y mitigar el impacto del riesgo actuarial, planteando nuevas metodologías mediante un nivel de estimación óptima en las primas para certificar un correcto funcionamiento a las entidades del sector en temas de costos, sostenibilidad y cumplimiento al servicio en el sector.

Suggested Citation

  • Salazar García, Juan Fernando & Guzmán Aguilar, Diana Sirley & Hoyos Nieto, Daniel Arturo, 2023. "Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia [Modelling of an insurance premium through the application," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 35(1), pages 330-359, June.
  • Handle: RePEc:pab:rmcpee:v:35:y:2023:i:1:p:330-359
    DOI: https://doi.org/10.46661/revmetodoscuanteconempresa.5800
    as

    Download full text from publisher

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/5800/6828
    Download Restriction: no

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/5800
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.46661/revmetodoscuanteconempresa.5800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Migon, Helio S. & Moura, Fernando A.S., 2005. "Hierarchical Bayesian collective risk model: an application to health insurance," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 119-135, April.
    2. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
    3. Schinzinger, Edo & Denuit, Michel M. & Christiansen, Marcus C., 2016. "A multivariate evolutionary credibility model for mortality improvement rates," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 70-81.
    4. Denuit, Michel & Kiriliouk, Anna & Segers, Johan, 2015. "Max-factor individual risk models with application to credit portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 162-172.
    5. Schinzinger, Edo & Denuit, Michel & Christiansen, Marcus, 2016. "A multivariate evolutionary credibility model for mortality improvement rates," LIDAM Reprints ISBA 2016019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
    7. Denuit, Michel & Kiriliouk, Anna & Segers, Johan, 2015. "Max-factor individual risk models with application to credit portfolios," LIDAM Reprints ISBA 2015011, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Tsai, Cary Chi-Liang & Wu, Adelaide Di, 2020. "Incorporating hierarchical credibility theory into modelling of multi-country mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 37-54.
    9. Wen, Limin & Wu, Xianyi & Zhou, Xian, 2009. "The credibility premiums for models with dependence induced by common effects," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 19-25, February.
    10. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    11. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    12. Roos, Bero, 2007. "On variational bounds in the compound Poisson approximation of the individual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 403-414, May.
    13. Jiang, R., 2013. "A new bathtub curve model with a finite support," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 44-51.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Chen, Yongzhao & Cheung, Ka Chun & Choi, Hugo Ming Cheung & Yam, Sheung Chi Phillip, 2020. "Evolutionary credibility risk premium," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 216-229.
    16. Yang, Jingping & Zhou, Shulin & Zhang, Zhenyong, 2005. "The compound Poisson random variable's approximation to the individual risk model," Insurance: Mathematics and Economics, Elsevier, vol. 36(1), pages 57-77, February.
    17. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    18. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    2. Vernic, Raluca & Bolancé, Catalina & Alemany, Ramon, 2022. "Sarmanov distribution for modeling dependence between the frequency and the average severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 111-125.
    3. Wei Wang & Limin Wen & Zhixin Yang & Quan Yuan, 2020. "Quantile Credibility Models with Common Effects," Risks, MDPI, vol. 8(4), pages 1-10, September.
    4. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    5. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    6. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    7. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    8. Liu, Jing, 2018. "LLN-type approximations for large portfolio losses," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 71-77.
    9. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    10. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    11. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    13. Qiang Zhang & Lijun Wu & Qianqian Cui, 2017. "The balanced credibility estimators with correlation risk and inflation factor," Statistical Papers, Springer, vol. 58(3), pages 659-672, September.
    14. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    15. Zhang, Jianjun & Qiu, Chunjuan & Wu, Xianyi, 2018. "Bayesian ratemaking with common effects modeled by mixture of Polya tree processes," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 87-94.
    16. Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    17. Gao, Guangyuan & Li, Jiahong, 2023. "Dependence modeling of frequency-severity of insurance claims using waiting time," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 29-51.
    18. Lautier, Jackson P. & Pozdnyakov, Vladimir & Yan, Jun, 2023. "Pricing time-to-event contingent cash flows: A discrete-time survival analysis approach," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 53-71.
    19. Jeong, Himchan, 2024. "Tweedie multivariate semi-parametric credibility with the exchangeable correlation," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 13-21.
    20. Apostolos Bozikas & Georgios Pitselis, 2019. "Credible Regression Approaches to Forecast Mortality for Populations with Limited Data," Risks, MDPI, vol. 7(1), pages 1-22, February.

    More about this item

    Keywords

    prima de seguros; estudios actuariales; modelo de riesgo individual; modelo de riesgo colectivo; tasa de fracaso; teoría de la credibilidad; valoración de activos financieros; monto total de reclamaciones; insurance premium; actuarial studies; individual risk model; collective risk model; failure rate; credibility theory; valuation of financial assets; aggregate claim amount;
    All these keywords.

    JEL classification:

    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G52 - Financial Economics - - Household Finance - - - Insurance
    • I12 - Health, Education, and Welfare - - Health - - - Health Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:35:y:2023:i:1:p:330-359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.