IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v112y2023icp120-141.html
   My bibliography  Save this article

Asymptotics for a time-dependent by-claim model with dependent subexponential claims

Author

Listed:
  • Yuan, Meng
  • Lu, Dawei

Abstract

Consider a by-claim risk model with a constant force of interest, where each main claim may induce a by-claim after a random time. We propose a time-claim-dependent framework, that incorporates dependence between not only the waiting time and the claim but also the main claim and the corresponding by-claim. Based on this framework, we derive some asymptotic estimates for the finite-time ruin probabilities in the case of subexponential claims. We also provide examples and verify the assumptions on dependence. Numerical studies are conducted to examine the performance of these asymptotic formulas.

Suggested Citation

  • Yuan, Meng & Lu, Dawei, 2023. "Asymptotics for a time-dependent by-claim model with dependent subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 112(C), pages 120-141.
  • Handle: RePEc:eee:insuma:v:112:y:2023:i:c:p:120-141
    DOI: 10.1016/j.insmatheco.2023.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668723000604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2023.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
    2. Alexandru Asimit & Andrei Badescu, 2010. "Extremes on the discounted aggregate claims in a time dependent risk model," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2010(2), pages 93-104.
    3. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    4. Chen, Yiqing & Yuan, Zhongyi, 2017. "A revisit to ruin probabilities in the presence of heavy-tailed insurance and financial risks," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 75-81.
    5. Li, Jinzhu, 2013. "On pairwise quasi-asymptotically independent random variables and their applications," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2081-2087.
    6. Xiao, Yuntao & Guo, Junyi, 2007. "The compound binomial risk model with time-correlated claims," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 124-133, July.
    7. Xie, Jie-hua & Zou, Wei, 2010. "Expected present value of total dividends in a delayed claims risk model under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 415-422, April.
    8. Haizhong Yang & Wei Gao & Jinzhu Li, 2016. "Asymptotic ruin probabilities for a discrete-time risk model with dependent insurance and financial risks," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2016(1), pages 1-17, January.
    9. Yuen, K. C. & Guo, J. Y., 2001. "Ruin probabilities for time-correlated claims in the compound binomial model," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 47-57, August.
    10. Jaap Geluk & Qihe Tang, 2009. "Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables," Journal of Theoretical Probability, Springer, vol. 22(4), pages 871-882, December.
    11. Liu, Yang & Chen, Zhenlong & Fu, Ke-Ang, 2021. "Asymptotics for a time-dependent renewal risk model with subexponential main claims and delayed claims," Statistics & Probability Letters, Elsevier, vol. 177(C).
    12. Waters, Howard R. & Papatriandafylou, Alex, 1985. "Ruin probabilities allowing for delay in claims settlement," Insurance: Mathematics and Economics, Elsevier, vol. 4(2), pages 113-122, April.
    13. Fu, Ke-Ang & Ng, Cheuk Yin Andrew, 2014. "Asymptotics for the ruin probability of a time-dependent renewal risk model with geometric Lévy process investment returns and dominatedly-varying-tailed claims," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 80-87.
    14. Dawei Lu & Meng Yuan, 2022. "Asymptotic Finite-Time Ruin Probabilities for a Bidimensional Delay-Claim Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2265-2286, December.
    15. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Chen, Zhenlong & Fu, Ke-Ang, 2021. "Asymptotics for a time-dependent renewal risk model with subexponential main claims and delayed claims," Statistics & Probability Letters, Elsevier, vol. 177(C).
    2. Dawei Lu & Meng Yuan, 2022. "Asymptotic Finite-Time Ruin Probabilities for a Bidimensional Delay-Claim Risk Model with Subexponential Claims," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2265-2286, December.
    3. Jiyang Tan & Chun Li & Ziqiang Li & Xiangqun Yang & Bicheng Zhang, 2015. "Optimal dividend strategies in a delayed claim risk model with dividends discounted by stochastic interest rates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 61-83, August.
    4. Yang, Haizhong & Li, Jinzhu, 2019. "On asymptotic finite-time ruin probability of a renewal risk model with subexponential main claims and delayed claims," Statistics & Probability Letters, Elsevier, vol. 149(C), pages 153-159.
    5. Xie, Jie-hua & Zou, Wei, 2010. "Expected present value of total dividends in a delayed claims risk model under stochastic interest rates," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 415-422, April.
    6. Yang Yang & Xinzhi Wang & Xiaonan Su & Aili Zhang, 2019. "Asymptotic Behavior of Ruin Probabilities in an Insurance Risk Model with Quasi-Asymptotically Independent or Bivariate Regularly Varying-Tailed Main Claim and By-Claim," Complexity, Hindawi, vol. 2019, pages 1-6, October.
    7. Li, Jinzhu, 2013. "On pairwise quasi-asymptotically independent random variables and their applications," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2081-2087.
    8. Shijie Wang & Yueli Yang & Yang Liu & Lianqiang Yang, 2023. "Asymptotics for a Bidimensional Renewal Risk Model with Subexponential Main Claims and Delayed Claims," Methodology and Computing in Applied Probability, Springer, vol. 25(3), pages 1-13, September.
    9. He Liu & Zhenhua Bao, 2015. "On a Discrete Interaction Risk Model with Delayed Claims," JRFM, MDPI, vol. 8(4), pages 1-14, September.
    10. Dan Zhu & Ming Zhou & Chuancun Yin, 2023. "Finite-Time Ruin Probabilities of Bidimensional Risk Models with Correlated Brownian Motions," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    11. Cheng, Ming & Konstantinides, Dimitrios G. & Wang, Dingcheng, 2022. "Uniform asymptotic estimates in a time-dependent risk model with general investment returns and multivariate regularly varying claims," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    12. Chen, Mi & Yuen, Kam Chuen & Guo, Junyi, 2014. "Survival probabilities in a discrete semi-Markov risk model," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 205-215.
    13. Jaunė, Eglė & Šiaulys, Jonas, 2022. "Asymptotic risk decomposition for regularly varying distributions with tail dependence," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    14. Ming Cheng & Dingcheng Wang, 2023. "Uniform Asymptotic Estimate for the Ruin Probability in a Renewal Risk Model with Cox–Ingersoll–Ross Returns," Mathematics, MDPI, vol. 11(5), pages 1-10, March.
    15. Kam Pui Wat & Kam Chuen Yuen & Wai Keung Li & Xueyuan Wu, 2018. "On the Compound Binomial Risk Model with Delayed Claims and Randomized Dividends," Risks, MDPI, vol. 6(1), pages 1-13, January.
    16. Aparna B. S & Neelesh S Upadhye, 2019. "On the Compound Beta-Binomial Risk Model with Delayed Claims and Randomized Dividends," Papers 1908.03407, arXiv.org.
    17. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    18. Guo, Fenglong, 2022. "Ruin probability of a continuous-time model with dependence between insurance and financial risks caused by systematic factors," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    19. Roland R. Ramsahai, 2020. "Connecting actuarial judgment to probabilistic learning techniques with graph theory," Papers 2007.15475, arXiv.org.
    20. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:112:y:2023:i:c:p:120-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.