IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02891046.html
   My bibliography  Save this paper

Approximate Bayesian Computations to fit and compare insurance loss models

Author

Listed:
  • Pierre-Olivier Goffard

    (UCBL - Université Claude Bernard Lyon 1 - Université de Lyon, ISFA - Institut de Science Financière et d'Assurances, LSAF - Laboratoire de Sciences Actuarielles et Financières [Lyon] - ISFA - Institut de Science Financière et d'Assurances)

  • Patrick Laub

    (University of Melbourne, ISFA - Institut de Science Financière et d'Assurances)

Abstract

Approximate Bayesian Computation (ABC) is a statistical learning technique to calibrate and select models by comparing observed data to simulated data. This technique bypasses the use of the likelihood and requires only the ability to generate synthetic data from the models of interest. We apply ABC to fit and compare insurance loss models using aggregated data. A state-of-the-art ABC implementation in Python is proposed. It uses sequential Monte Carlo to sample from the posterior distribution and the Wasserstein distance to compare the observed and synthetic data. MSC 2010 : 60G55, 60G40, 12E10.

Suggested Citation

  • Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Post-Print hal-02891046, HAL.
  • Handle: RePEc:hal:journl:hal-02891046
    DOI: 10.1016/j.insmatheco.2021.06.002
    Note: View the original document on HAL open archive server: https://hal.science/hal-02891046v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02891046v2/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peters, Gareth W. & Wüthrich, Mario V. & Shevchenko, Pavel V., 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 36-51, August.
    2. Prangle Dennis & Fearnhead Paul & Cox Murray P. & Biggs Patrick J. & French Nigel P., 2014. "Semi-automatic selection of summary statistics for ABC model choice," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 67-82, February.
    3. Renshaw, Arthur E., 1994. "Modelling the Claims Process in the Presence of Covariates," ASTIN Bulletin, Cambridge University Press, vol. 24(2), pages 265-285, November.
    4. Smyth, Gordon K. & Jørgensen, Bent, 2002. "Fitting Tweedie's Compound Poisson Model to Insurance Claims Data: Dispersion Modelling," ASTIN Bulletin, Cambridge University Press, vol. 32(1), pages 143-157, May.
    5. Streftaris, George & Worton, Bruce J., 2008. "Efficient and accurate approximate Bayesian inference with an application to insurance data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2604-2622, January.
    6. Espen Bernton & Pierre E. Jacob & Mathieu Gerber & Christian P. Robert, 2019. "Approximate Bayesian computation with the Wasserstein distance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(2), pages 235-269, April.
    7. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    8. Gareth W. Peters & Mario V. Wuthrich & Pavel V. Shevchenko, 2010. "Chain ladder method: Bayesian bootstrap versus classical bootstrap," Papers 1004.2548, arXiv.org.
    9. Shota Gugushvili & Frank Meulen & Peter Spreij, 2018. "A non-parametric Bayesian approach to decompounding from high frequency data," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 53-79, April.
    10. McCulloch, Robert & Rossi, Peter E., 1991. "A bayesian approach to testing the arbitrage pricing theory," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 141-168.
    11. Blum, Michael G. B., 2010. "Approximate Bayesian Computation: A Nonparametric Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1178-1187.
    12. Hesselager, Ole, 1996. "Recursions for certain bivariate counting distributions and their compound distributions," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 35-52, May.
    13. Mark A. Beaumont & Jean-Marie Cornuet & Jean-Michel Marin & Christian P. Robert, 2009. "Adaptive approximate Bayesian computation," Biometrika, Biometrika Trust, vol. 96(4), pages 983-990.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Livieri, Giulia & Radi, Davide & Smaniotto, Elia, 2024. "Pricing transition risk with a jump-diffusion credit risk model: evidences from the CDS market," LSE Research Online Documents on Economics 123650, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goffard, Pierre-Olivier & Laub, Patrick J., 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 350-371.
    2. Pierre-Olivier Goffard & Patrick Laub, 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Working Papers hal-02891046, HAL.
    3. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    4. Thomas A. Dean & Sumeetpal S. Singh & Ajay Jasra & Gareth W. Peters, 2014. "Parameter Estimation for Hidden Markov Models with Intractable Likelihoods," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 970-987, December.
    5. Cecilia Viscardi & Michele Boreale & Fabio Corradi, 2021. "Weighted approximate Bayesian computation via Sanov’s theorem," Computational Statistics, Springer, vol. 36(4), pages 2719-2753, December.
    6. Anthony Ebert & Ritabrata Dutta & Kerrie Mengersen & Antonietta Mira & Fabrizio Ruggeri & Paul Wu, 2021. "Likelihood‐free parameter estimation for dynamic queueing networks: Case study of passenger flow in an international airport terminal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 770-792, June.
    7. Xiaolin Luo & Pavel V. Shevchenko, 2012. "Bayesian Model Choice of Grouped t-Copula," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 1097-1119, December.
    8. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    9. Peters, Gareth W. & Dong, Alice X.D. & Kohn, Robert, 2014. "A copula based Bayesian approach for paid–incurred claims models for non-life insurance reserving," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 258-278.
    10. Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
    11. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    12. Alexander Buchholz & Nicolas CHOPIN, 2017. "Improving approximate Bayesian computation via quasi Monte Carlo," Working Papers 2017-37, Center for Research in Economics and Statistics.
    13. Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.
    14. Frazier, David T. & Maneesoonthorn, Worapree & Martin, Gael M. & McCabe, Brendan P.M., 2019. "Approximate Bayesian forecasting," International Journal of Forecasting, Elsevier, vol. 35(2), pages 521-539.
    15. Dyer, Joel & Cannon, Patrick & Farmer, J. Doyne & Schmon, Sebastian M., 2024. "Black-box Bayesian inference for agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 161(C).
    16. Sarabia, José María & Guillén, Montserrat, 2008. "Joint modelling of the total amount and the number of claims by conditionals," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 466-473, December.
    17. Omerašević Amela & Selimović Jasmina, 2020. "Classification Ratemaking Using Decision Tree in the Insurance Market of Bosnia and Herzegovina," South East European Journal of Economics and Business, Sciendo, vol. 15(2), pages 124-139, December.
    18. Gareth W. Peters & Efstathios Panayi & Francois Septier, 2015. "SMC-ABC methods for the estimation of stochastic simulation models of the limit order book," Papers 1504.05806, arXiv.org.
    19. Peng Shi & Glenn M. Fung & Daniel Dickinson, 2022. "Assessing hail risk for property insurers with a dependent marked point process," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 302-328, January.
    20. Mikael Sunnåker & Alberto Giovanni Busetto & Elina Numminen & Jukka Corander & Matthieu Foll & Christophe Dessimoz, 2013. "Approximate Bayesian Computation," PLOS Computational Biology, Public Library of Science, vol. 9(1), pages 1-10, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02891046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.