IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v83y2018icp32-46.html
   My bibliography  Save this article

Does hunger for bonuses drive the dependence between claim frequency and severity?

Author

Listed:
  • Park, Sojung C.
  • Kim, Joseph H.T.
  • Ahn, Jae Youn

Abstract

Auto ratemaking models have traditionally assumed independence between claim frequency and severity. With the development of insurance claim models that can accommodate dependence between claim frequency and severity, a series of recent studies has revealed that the aforementioned dependence between frequency and severity exists for auto insurance claims, demonstrating the validity of such models. However, the underlying process that creates this dependence has received little attention in the literature. Thus, we show that a rational decision-making process of drivers known as bonus hunger can systemically induce dependence between the claim frequency and severity even when the ground-up loss frequency and severity are, in fact, independent. Our model, based on the random effect model coupled with the standard bonus–malus system, successfully explains the seemingly contradictory results from the existing literature of weak positive dependence, between the claim frequency and severity for liability claims, and moderately negative dependence for collision claims. Our findings show that the seemingly contradicting dependence structures reported in the literature may be neither accidental nor sample specific. Furthermore, the bonus-hunger process also implies that the level of the claim frequency-severity dependence varies across bonus–malus classes, suggesting that a uniform dependency structure may not be appropriate for auto ratemaking modeling.

Suggested Citation

  • Park, Sojung C. & Kim, Joseph H.T. & Ahn, Jae Youn, 2018. "Does hunger for bonuses drive the dependence between claim frequency and severity?," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 32-46.
  • Handle: RePEc:eee:insuma:v:83:y:2018:i:c:p:32-46
    DOI: 10.1016/j.insmatheco.2018.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668718301094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2018.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinquet, Jean, 1997. "Allowance for Cost of Claims in Bonus-Malus Systems," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 33-57, May.
    2. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149, September.
    3. Lemaire, Jean, 1977. "La Soif du Bonus," ASTIN Bulletin, Cambridge University Press, vol. 9(1-2), pages 181-190, January.
    4. Shi, Peng & Feng, Xiaoping & Ivantsova, Anastasia, 2015. "Dependent frequency–severity modeling of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 417-428.
    5. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    6. Pitrebois, Sandra & Walhin, Jean-François & Denuit, Michel, 2005. "Bonus-malus Systems with Varying Deductibles," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 261-274, May.
    7. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2015. "Optimal relativities and transition rules of a bonus–malus system," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 255-263.
    8. Philipson, Carl, 1960. "The Swedish Systems of Bonus," ASTIN Bulletin, Cambridge University Press, vol. 1(3), pages 134-141, April.
    9. Walhin, Jean François & Paris, José, 2000. "The True Claim Amount and Frequency Distributions within a Bonus-Malus System," ASTIN Bulletin, Cambridge University Press, vol. 30(2), pages 391-403, November.
    10. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    11. Sojung Carol Park & Sangeun Han, 2017. "Externalities From Driving Luxury Cars," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 20(3), pages 391-427, December.
    12. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    13. Baumgartner, Carolin & Gruber, Lutz F. & Czado, Claudia, 2015. "Bayesian total loss estimation using shared random effects," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 194-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Okura Mahito & Yoshizawa Takuya & Sakaki Motohiro, 2021. "An Evaluation of the New Japanese Bonus–Malus System with No-claim and Claimed Subclasses," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 15(1), pages 1-12, January.
    2. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    3. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    5. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    6. Spark C. Tseung & Ian Weng Chan & Tsz Chai Fung & Andrei L. Badescu & X. Sheldon Lin, 2022. "A Posteriori Risk Classification and Ratemaking with Random Effects in the Mixture-of-Experts Model," Papers 2209.15212, arXiv.org.
    7. Oh, Rosy & Lee, Youngju & Zhu, Dan & Ahn, Jae Youn, 2021. "Predictive risk analysis using a collective risk model: Choosing between past frequency and aggregate severity information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 127-139.
    8. Simon, Pierre-Alexandre & Trufin, Julien & Denuit, Michel, 2023. "Bivariate Poisson credibility model and bonus-malus scale for claim and near-claim events," LIDAM Discussion Papers ISBA 2023014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    2. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    3. Peng Shi & Glenn M. Fung & Daniel Dickinson, 2022. "Assessing hail risk for property insurers with a dependent marked point process," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 302-328, January.
    4. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    5. Oh, Rosy & Lee, Kyung Suk & Park, Sojung C. & Ahn, Jae Youn, 2020. "Double-counting problem of the bonus–malus system," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 141-155.
    6. Oh, Rosy & Lee, Youngju & Zhu, Dan & Ahn, Jae Youn, 2021. "Predictive risk analysis using a collective risk model: Choosing between past frequency and aggregate severity information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 127-139.
    7. Šoltés Erik & Zelinová Silvia & Bilíková Mária, 2019. "General Linear Model: An Effective Tool For Analysis Of Claim Severity In Motor Third Party Liability Insurance," Statistics in Transition New Series, Statistics Poland, vol. 20(4), pages 13-31, December.
    8. Olena Ragulina, 2017. "Bonus--malus systems with different claim types and varying deductibles," Papers 1707.00917, arXiv.org.
    9. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    10. Lee, Woojoo & Kim, Jeonghwan & Ahn, Jae Youn, 2020. "The Poisson random effect model for experience ratemaking: Limitations and alternative solutions," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 26-36.
    11. Erik Šoltés & Silvia Zelinová & Mária Bilíková, 2019. "General Linear Model: An Effective Tool For Analysis Of Claim Severity In Motor Third Party Liability Insurance," Statistics in Transition New Series, Polish Statistical Association, vol. 20(4), pages 13-31, December.
    12. Boucher, Jean-Philippe & Denuit, Michel, 2008. "Credibility premiums for the zero-inflated Poisson model and new hunger for bonus interpretation," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 727-735, April.
    13. Tan, Chong It, 2016. "Varying transition rules in bonus–malus systems: From rules specification to determination of optimal relativities," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 134-140.
    14. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    15. Marian Reiff & Erik Šoltés & Silvia Komara & Tatiana Šoltésová & Silvia Zelinová, 2022. "Segmentation and estimation of claim severity in motor third-party liability insurance through contrast analysis," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(3), pages 803-842, September.
    16. Arthur Charpentier & Arthur David & Romuald Elie, 2017. "Optimal Claiming Strategies in Bonus Malus Systems and Implied Markov Chains," Risks, MDPI, vol. 5(4), pages 1-17, November.
    17. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    18. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    19. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    20. Tingting Chen & Anthony Francis Desmond & Peter Adamic, 2023. "Generalized Additive Modelling of Dependent Frequency and Severity Distributions for Aggregate Claims," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 12(4), pages 1-1.

    More about this item

    Keywords

    Dependence; Generalized linear model; Bonus Hunger; Bonus-malus system; Optimal retention;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:83:y:2018:i:c:p:32-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.