IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v102y2022icp111-125.html
   My bibliography  Save this article

Sarmanov distribution for modeling dependence between the frequency and the average severity of insurance claims

Author

Listed:
  • Vernic, Raluca
  • Bolancé, Catalina
  • Alemany, Ramon

Abstract

Real data studies emphasized situations where the classical independence assumption between the frequency and the severity of claims does not hold in the collective model. Therefore, there is an increasing interest in defining models that capture this dependence. In this paper, we introduce such a model based on Sarmanov's bivariate distribution, which has the ability of joining different types of marginals in flexible dependence structures. More precisely, we join the claims frequency and the average severity by means of this distribution. We also suggest a maximum likelihood estimation procedure to estimate the parameters and illustrate it both on simulated and real data.

Suggested Citation

  • Vernic, Raluca & Bolancé, Catalina & Alemany, Ramon, 2022. "Sarmanov distribution for modeling dependence between the frequency and the average severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 111-125.
  • Handle: RePEc:eee:insuma:v:102:y:2022:i:c:p:111-125
    DOI: 10.1016/j.insmatheco.2021.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668721001748
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2021.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
    2. Tamraz, Maissa & Vernic, Raluca, 2018. "On The Evaluation Of Multivariate Compound Distributions With Continuous Severity Distributions And Sarmanov'S Counting Distribution," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 841-870, May.
    3. Krämer, Nicole & Brechmann, Eike C. & Silvestrini, Daniel & Czado, Claudia, 2013. "Total loss estimation using copula-based regression models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 829-839.
    4. Bolancé, Catalina & Vernic, Raluca, 2019. "Multivariate count data generalized linear models: Three approaches based on the Sarmanov distribution," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 89-103.
    5. Shi, Peng & Feng, Xiaoping & Ivantsova, Anastasia, 2015. "Dependent frequency–severity modeling of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 417-428.
    6. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    7. Hua, Lei, 2015. "Tail negative dependence and its applications for aggregate loss modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 135-145.
    8. Edward Frees & Jie Gao & Marjorie Rosenberg, 2011. "Predicting the Frequency and Amount of Health Care Expenditures," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(3), pages 377-392.
    9. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    10. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    11. Abdallah, Anas & Boucher, Jean-Philippe & Cossette, Hélène, 2016. "Sarmanov family of multivariate distributions for bivariate dynamic claim counts model," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 120-133.
    12. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    13. McNeil, Alexander J., 1997. "Estimating the Tails of Loss Severity Distributions Using Extreme Value Theory," ASTIN Bulletin, Cambridge University Press, vol. 27(1), pages 117-137, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    2. Övgücan Karadağ Erdemir, 2023. "A Comparative Perspective on Multivariate Modeling of Insurance Compensation Payments with Regression-Based and Copula-Based Models," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 161-171, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Guangyuan & Li, Jiahong, 2023. "Dependence modeling of frequency-severity of insurance claims using waiting time," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 29-51.
    2. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    3. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
    4. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    5. Catalina Bolancé & Raluca Vernic, 2020. "Frequency and Severity Dependence in the Collective Risk Model: An Approach Based on Sarmanov Distribution," Mathematics, MDPI, vol. 8(9), pages 1-17, August.
    6. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    7. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Salazar García, Juan Fernando & Guzmán Aguilar, Diana Sirley & Hoyos Nieto, Daniel Arturo, 2023. "Modelación de una prima de seguros mediante la aplicación de métodos actuariales, teoría de fallas y Black-Scholes en la salud en Colombia [Modelling of an insurance premium through the application," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 35(1), pages 330-359, June.
    9. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    10. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    11. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    12. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    13. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    14. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2024. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.
    15. Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    16. Dong-Young Lim, 2021. "A Neural Frequency-Severity Model and Its Application to Insurance Claims," Papers 2106.10770, arXiv.org, revised Feb 2024.
    17. Goffard, Pierre-Olivier & Laub, Patrick J., 2021. "Approximate Bayesian Computations to fit and compare insurance loss models," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 350-371.
    18. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    19. Tianxing Yan & Yi Lu & Himchan Jeong, 2024. "Dependence Modelling for Heavy-Tailed Multi-Peril Insurance Losses," Risks, MDPI, vol. 12(6), pages 1-17, June.
    20. Laudagé, Christian & Desmettre, Sascha & Wenzel, Jörg, 2019. "Severity modeling of extreme insurance claims for tariffication," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 77-92.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:102:y:2022:i:c:p:111-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.