IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0190103.html
   My bibliography  Save this article

Evaluating the influential priority of the factors on insurance loss of public transit

Author

Listed:
  • Wenhui Zhang
  • Yongmin Su
  • Ruimin Ke
  • Xinqiang Chen

Abstract

Understanding correlation between influential factors and insurance losses is beneficial for insurers to accurately price and modify the bonus-malus system. Although there have been a certain number of achievements in insurance losses and claims modeling, limited efforts focus on exploring the relative role of accidents characteristics in insurance losses. The primary objective of this study is to evaluate the influential priority of transit accidents attributes, such as the time, location and type of accidents. Based on the dataset from Washington State Transit Insurance Pool (WSTIP) in USA, we implement several key algorithms to achieve the objectives. First, K-means algorithm contributes to cluster the insurance loss data into 6 intervals; second, Grey Relational Analysis (GCA) model is applied to calculate grey relational grades of the influential factors in each interval; in addition, we implement Naive Bayes model to compute the posterior probability of factors values falling in each interval. The results show that the time, location and type of accidents significantly influence the insurance loss in the first five intervals, but their grey relational grades show no significantly difference. In the last interval which represents the highest insurance loss, the grey relational grade of the time is significant higher than that of the location and type of accidents. For each value of the time and location, the insurance loss most likely falls in the first and second intervals which refers to the lower loss. However, for accidents between buses and non-motorized road users, the probability of insurance loss falling in the interval 6 tends to be highest.

Suggested Citation

  • Wenhui Zhang & Yongmin Su & Ruimin Ke & Xinqiang Chen, 2018. "Evaluating the influential priority of the factors on insurance loss of public transit," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0190103
    DOI: 10.1371/journal.pone.0190103
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190103
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0190103&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0190103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lai, Li-Hua, 2015. "Statistical premium in correlated losses of insurance," Economic Modelling, Elsevier, vol. 49(C), pages 248-253.
    2. Guelman, Leo & Guillén, Montserrat & Pérez-Marín, Ana M., 2014. "A survey of personalized treatment models for pricing strategies in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 68-76.
    3. Krämer, Nicole & Brechmann, Eike C. & Silvestrini, Daniel & Czado, Claudia, 2013. "Total loss estimation using copula-based regression models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 829-839.
    4. Li, Bo & Ni, Weihong & Constantinescu, Corina, 2015. "Risk models with premiums adjusted to claims number," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 94-102.
    5. Yanwei Zhang & Vanja Dukic & James Guszcza, 2012. "A Bayesian non‐linear model for forecasting insurance loss payments," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 175(2), pages 637-656, April.
    6. Jung, Young Cheol, 2016. "A portfolio insurance strategy for volatility index (VIX) futures," The Quarterly Review of Economics and Finance, Elsevier, vol. 60(C), pages 189-200.
    7. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    8. Li, Chu-Shiu & Lin, Chih Hao & Liu, Chwen-Chi & Woodside, Arch G., 2012. "Dynamic pricing in regulated automobile insurance markets with heterogeneous insurers: Strategies nice versus nasty for customers," Journal of Business Research, Elsevier, vol. 65(7), pages 968-976.
    9. Simon Lee & X. Lin, 2010. "Modeling and Evaluating Insurance Losses Via Mixtures of Erlang Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 14(1), pages 107-130.
    10. Wang, Ching-Ping & Huang, Hung-Hsi, 2016. "Optimal insurance contract under VaR and CVaR constraints," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 110-127.
    11. Pantelous, Athanasios A. & Passalidou, Eudokia, 2015. "Optimal premium pricing strategies for competitive general insurance markets," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 858-874.
    12. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    13. Jeon, Yongho & Kim, Joseph H.T., 2013. "A gamma kernel density estimation for insurance loss data," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 569-579.
    14. Tan, Chong It, 2016. "Varying transition rules in bonus–malus systems: From rules specification to determination of optimal relativities," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 134-140.
    15. Frees, Edward W. & Wang, Ping, 2006. "Copula credibility for aggregate loss models," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 360-373, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Araichi, Sawssen & Peretti, Christian de & Belkacem, Lotfi, 2017. "Reserve modelling and the aggregation of risks using time varying copula models," Economic Modelling, Elsevier, vol. 67(C), pages 149-158.
    2. Gao, Guangyuan & Li, Jiahong, 2023. "Dependence modeling of frequency-severity of insurance claims using waiting time," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 29-51.
    3. Cossette, Hélène & Marceau, Etienne & Mtalai, Itre, 2019. "Collective risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 153-168.
    4. Vernic, Raluca & Bolancé, Catalina & Alemany, Ramon, 2022. "Sarmanov distribution for modeling dependence between the frequency and the average severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 111-125.
    5. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    6. Zifeng Zhao & Peng Shi & Xiaoping Feng, 2021. "Knowledge Learning of Insurance Risks Using Dependence Models," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1177-1196, July.
    7. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    8. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    9. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    10. Syuhada, Khreshna & Tjahjono, Venansius & Hakim, Arief, 2024. "Compound Poisson–Lindley process with Sarmanov dependence structure and its application for premium-based spectral risk forecasting," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    11. Dong-Young Lim, 2021. "A Neural Frequency-Severity Model and Its Application to Insurance Claims," Papers 2106.10770, arXiv.org, revised Feb 2024.
    12. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    13. Tatjana Miljkovic & Daniel Fernández, 2018. "On Two Mixture-Based Clustering Approaches Used in Modeling an Insurance Portfolio," Risks, MDPI, vol. 6(2), pages 1-18, May.
    14. Övgücan Karadağ Erdemir, 2023. "A Comparative Perspective on Multivariate Modeling of Insurance Compensation Payments with Regression-Based and Copula-Based Models," EKOIST Journal of Econometrics and Statistics, Istanbul University, Faculty of Economics, vol. 0(39), pages 161-171, December.
    15. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Laudagé, Christian & Desmettre, Sascha & Wenzel, Jörg, 2019. "Severity modeling of extreme insurance claims for tariffication," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 77-92.
    17. Xiaoshan Su & Manying Bai, 2020. "Stochastic gradient boosting frequency-severity model of insurance claims," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    18. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    19. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
    20. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0190103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.