IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2106.10770.html
   My bibliography  Save this paper

A Neural Frequency-Severity Model and Its Application to Insurance Claims

Author

Listed:
  • Dong-Young Lim

Abstract

This paper proposes a flexible and analytically tractable class of frequency and severity models for predicting insurance claims. The proposed model is able to capture nonlinear relationships in explanatory variables by characterizing the logarithmic mean functions of frequency and severity distributions as neural networks. Moreover, a potential dependence between the claim frequency and severity can be incorporated. In particular, the paper provides analytic formulas for mean and variance of the total claim cost, making our model ideal for many applications such as pricing insurance contracts and the pure premium. A simulation study demonstrates that our method successfully recovers nonlinear features of explanatory variables as well as the dependency between frequency and severity. Then, this paper uses a French auto insurance claim dataset to illustrate that the proposed model is superior to the existing methods in fitting and predicting the claim frequency, severity, and the total claim loss. Numerical results indicate that the proposed model helps in maintaining the competitiveness of an insurer by accurately predicting insurance claims and avoiding adverse selection.

Suggested Citation

  • Dong-Young Lim, 2021. "A Neural Frequency-Severity Model and Its Application to Insurance Claims," Papers 2106.10770, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2106.10770
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2106.10770
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    2. Yi Yang & Wei Qian & Hui Zou, 2018. "Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 456-470, July.
    3. Alma Cohen & Peter Siegelman, 2010. "Testing for Adverse Selection in Insurance Markets," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(1), pages 39-84, March.
    4. Castro-Nuño, Mercedes & Arévalo-Quijada, M. Teresa, 2018. "Assessing urban road safety through multidimensional indexes: Application of multicriteria decision making analysis to rank the Spanish provinces," Transport Policy, Elsevier, vol. 68(C), pages 118-129.
    5. Dahen, Hela & Dionne, Georges, 2010. "Scaling models for the severity and frequency of external operational loss data," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1484-1496, July.
    6. Shi, Peng & Feng, Xiaoping & Ivantsova, Anastasia, 2015. "Dependent frequency–severity modeling of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 417-428.
    7. Xiaoshan Su & Manying Bai, 2020. "Stochastic gradient boosting frequency-severity model of insurance claims," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    8. Chavez-Demoulin, V. & Embrechts, P. & Neslehova, J., 2006. "Quantitative models for operational risk: Extremes, dependence and aggregation," Journal of Banking & Finance, Elsevier, vol. 30(10), pages 2635-2658, October.
    9. Brechmann, Eike & Czado, Claudia & Paterlini, Sandra, 2014. "Flexible dependence modeling of operational risk losses and its impact on total capital requirements," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 271-285.
    10. Krämer, Nicole & Brechmann, Eike C. & Silvestrini, Daniel & Czado, Claudia, 2013. "Total loss estimation using copula-based regression models," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 829-839.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eckert, Christian & Gatzert, Nadine, 2017. "Modeling operational risk incorporating reputation risk: An integrated analysis for financial firms," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 122-137.
    2. Edward W. Frees & Gee Lee & Lu Yang, 2016. "Multivariate Frequency-Severity Regression Models in Insurance," Risks, MDPI, vol. 4(1), pages 1-36, February.
    3. Gao, Guangyuan & Li, Jiahong, 2023. "Dependence modeling of frequency-severity of insurance claims using waiting time," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 29-51.
    4. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    5. Denuit, Michel & Lu, Yang, 2020. "Wishart-Gamma mixtures for multiperil experience ratemaking, frequency-severity experience rating and micro-loss reserving," LIDAM Discussion Papers ISBA 2020016, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Vernic, Raluca & Bolancé, Catalina & Alemany, Ramon, 2022. "Sarmanov distribution for modeling dependence between the frequency and the average severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 111-125.
    7. Tingting Chen & Anthony Francis Desmond & Peter Adamic, 2023. "Generalized Additive Modelling of Dependent Frequency and Severity Distributions for Aggregate Claims," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 12(4), pages 1-1.
    8. Xiaoshan Su & Manying Bai, 2020. "Stochastic gradient boosting frequency-severity model of insurance claims," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-24, August.
    9. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    10. Lee, Gee Y. & Shi, Peng, 2019. "A dependent frequency–severity approach to modeling longitudinal insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 115-129.
    11. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    12. Dionne, Georges & Saissi-Hassani, Samir, 2016. "Hidden Markov Regimes in Operational Loss Data: Application to the Recent Financial Crisis," Working Papers 15-3, HEC Montreal, Canada Research Chair in Risk Management.
    13. Uddin, Md Hamid & Mollah, Sabur & Islam, Nazrul & Ali, Md Hakim, 2023. "Does digital transformation matter for operational risk exposure?," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    14. Garrido, J. & Genest, C. & Schulz, J., 2016. "Generalized linear models for dependent frequency and severity of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 205-215.
    15. Kley, Oliver & Klüppelberg, Claudia & Paterlini, Sandra, 2020. "Modelling extremal dependence for operational risk by a bipartite graph," Journal of Banking & Finance, Elsevier, vol. 117(C).
    16. Xu, Shuzhe & Zhang, Chuanlong & Hong, Don, 2022. "BERT-based NLP techniques for classification and severity modeling in basic warranty data study," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 57-67.
    17. Park, Sojung C. & Kim, Joseph H.T. & Ahn, Jae Youn, 2018. "Does hunger for bonuses drive the dependence between claim frequency and severity?," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 32-46.
    18. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    19. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    20. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2106.10770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.