IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v56y2013icp155-166.html
   My bibliography  Save this item

Development and assessment of an integrated biomass-based multi-generation energy system

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Anvari, Simin & Khalilarya, Sharam & Zare, V., 2018. "Exergoeconomic and environmental analysis of a novel configuration of solar-biomass hybrid power generation system," Energy, Elsevier, vol. 165(PB), pages 776-789.
  2. Malik, Monu & Dincer, Ibrahim & Rosen, Marc A., 2015. "Development and analysis of a new renewable energy-based multi-generation system," Energy, Elsevier, vol. 79(C), pages 90-99.
  3. Tippawan, Phanicha & Arpornwichanop, Amornchai & Dincer, Ibrahim, 2015. "Energy and exergy analyses of an ethanol-fueled solid oxide fuel cell for a trigeneration system," Energy, Elsevier, vol. 87(C), pages 228-239.
  4. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
  5. Sadeghi, M. & Mehr, A.S. & Zar, M. & Santarelli, M., 2018. "Multi-objective optimization of a novel syngas fed SOFC power plant using a downdraft gasifier," Energy, Elsevier, vol. 148(C), pages 16-31.
  6. Abubaker, Ahmad M. & Darwish Ahmad, Adnan & Salaimeh, Ahmad A. & Akafuah, Nelson K. & Saito, Kozo, 2022. "A novel solar combined cycle integration: An exergy-based optimization using artificial neural network," Renewable Energy, Elsevier, vol. 181(C), pages 914-932.
  7. Al Asfar, Jamil & AlShwawra, Ahmad & Shaban, Nabeel Abu & Alrbai, Mohammad & Qawasmeh, Bashar R. & Sakhrieh, Ahmad & Hamdan, Mohammad A. & Odeh, Omar, 2020. "Thermodynamic analysis of a biomass-fired lab-scale power plant," Energy, Elsevier, vol. 194(C).
  8. Zhao, Tengfei & Ahmad, Sayed Fayaz & Agrawal, Manoj Kumar & Ahmad Bani Ahmad, Ahmad Yahiya & Ghfar, Ayman A. & Valsalan, Prajoona & Shah, Nehad Ali & Gao, Xiaomin, 2024. "Design and thermo-enviro-economic analyses of a novel thermal design process for a CCHP-desalination application using LNG regasification integrated with a gas turbine power plant," Energy, Elsevier, vol. 295(C).
  9. Pali Kpelou & Damgou Mani Kongnine & Roger Asse & Essowè Mouzou, 2022. "Experimental investigation of hot water cogeneration using a carbonizer fit out with a preheating system [Biomass—alternative renewable energy source and its conversion for hydrogen rich gas produc," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 327-332.
  10. Houd Al‐Obaidli & Yusuf Bicer & Tareq Al‐Ansari, 2020. "Performance comparison of a natural gas and renewable‐based power and desalination system for polygeneration," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 678-702, August.
  11. Mauro Villarini & Vera Marcantonio & Andrea Colantoni & Enrico Bocci, 2019. "Sensitivity Analysis of Different Parameters on the Performance of a CHP Internal Combustion Engine System Fed by a Biomass Waste Gasifier," Energies, MDPI, vol. 12(4), pages 1-21, February.
  12. Boyaghchi, Fateme Ahmadi & Chavoshi, Mansoure & Sabeti, Vajiheh, 2018. "Multi-generation system incorporated with PEM electrolyzer and dual ORC based on biomass gasification waste heat recovery: Exergetic, economic and environmental impact optimizations," Energy, Elsevier, vol. 145(C), pages 38-51.
  13. Yu, Haoshui & Eason, John & Biegler, Lorenz T. & Feng, Xiao, 2017. "Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery," Energy, Elsevier, vol. 119(C), pages 322-333.
  14. Anahita Moharamian & Saeed Soltani & Faramarz Ranjbar & Mortaza Yari & Marc A Rosen, 2017. "Thermodynamic analysis of a wall mounted gas boiler with an organic Rankine cycle and hydrogen production unit," Energy & Environment, , vol. 28(7), pages 725-743, November.
  15. khanmohammadi, Shoaib & Saadat-Targhi, Morteza, 2019. "Performance enhancement of an integrated system with solar flat plate collector for hydrogen production using waste heat recovery," Energy, Elsevier, vol. 171(C), pages 1066-1076.
  16. Zhu, Haodong & Yi, Baojun & Hu, Hongyun & Fan, Qizhou & Wang, Hao & Yao, Hong, 2021. "The effects of char and potassium on the fast pyrolysis behaviors of biomass in an infrared-heating condition," Energy, Elsevier, vol. 214(C).
  17. Yari, Mortaza & Mehr, Ali Saberi & Mahmoudi, Seyed Mohammad Seyed & Santarelli, Massimo, 2016. "A comparative study of two SOFC based cogeneration systems fed by municipal solid waste by means of either the gasifier or digester," Energy, Elsevier, vol. 114(C), pages 586-602.
  18. Ramoon Barros Lovate Temporim & Gianluca Cavalaglio & Alessandro Petrozzi & Valentina Coccia & Paola Iodice & Andrea Nicolini & Franco Cotana, 2022. "Life Cycle Assessment and Energy Balance of a Polygeneration Plant Fed with Lignocellulosic Biomass of Cynara cardunculus L," Energies, MDPI, vol. 15(7), pages 1-21, March.
  19. Alipour, Mehran & Deymi-Dashtebayaz, Mahdi & Asadi, Mostafa, 2023. "Investigation of energy, exergy, and economy of co-generation system of solar electricity and cooling using linear parabolic collector for a data center," Energy, Elsevier, vol. 279(C).
  20. Ebadollahi, Mohammad & Rostamzadeh, Hadi & Pedram, Mona Zamani & Ghaebi, Hadi & Amidpour, Majid, 2019. "Proposal and assessment of a new geothermal-based multigeneration system for cooling, heating, power, and hydrogen production, using LNG cold energy recovery," Renewable Energy, Elsevier, vol. 135(C), pages 66-87.
  21. Taheri, M.H. & Mosaffa, A.H. & Farshi, L. Garousi, 2017. "Energy, exergy and economic assessments of a novel integrated biomass based multigeneration energy system with hydrogen production and LNG regasification cycle," Energy, Elsevier, vol. 125(C), pages 162-177.
  22. Farrokhi, Meysam & Javani, Nader & Motallebzadeh, Roghayyeh & Ebrahimpour, Abdolsalam, 2022. "Dynamic simulation and optimization of a novel energy system with Hydrogen energy storage for hotel buildings," Energy, Elsevier, vol. 257(C).
  23. Piotr Kolasiński & Przemysław Błasiak & Józef Rak, 2016. "Experimental and Numerical Analyses on the Rotary Vane Expander Operating Conditions in a Micro Organic Rankine Cycle System," Energies, MDPI, vol. 9(8), pages 1-15, August.
  24. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
  25. Yang, Siyu & Yang, Qingchun & Qian, Yu, 2013. "A composite efficiency metrics for evaluation of resource and energy utilization," Energy, Elsevier, vol. 61(C), pages 455-462.
  26. Sikarwar, Shailesh Singh & Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Kakunuri, Manohar & Vooradi, Ramsagar, 2020. "Chemical looping combustion integrated Organic Rankine Cycled biomass-fired power plant – Energy and exergy analyses," Renewable Energy, Elsevier, vol. 155(C), pages 931-949.
  27. Ogorure, O.J. & Heberle, F. & Brüggemann, D., 2024. "Thermo-economic analysis and multi-criteria optimization of an integrated biomass-to-energy power plant," Renewable Energy, Elsevier, vol. 224(C).
  28. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
  29. Cao, Liyan & Wang, Jiangfeng & Dai, Yiping, 2014. "Thermodynamic analysis of a biomass-fired Kalina cycle with regenerative heater," Energy, Elsevier, vol. 77(C), pages 760-770.
  30. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
  31. Kanematsu, Yuichiro & Oosawa, Kazutake & Okubo, Tatsuya & Kikuchi, Yasunori, 2017. "Designing the scale of a woody biomass CHP considering local forestry reformation: A case study of Tanegashima, Japan," Applied Energy, Elsevier, vol. 198(C), pages 160-172.
  32. Tan, Hua & Bo, Likang & Nutakki, Tirumala Uday Kumar & Agrawal, Manoj Kumar & Seikh, Asiful H. & Tahir Chauhdary, Sohaib & Shah, Nehad Ali & Ji, Tiancheng, 2024. "A comprehensive multi-variable approach for evaluating the feasibility of integration a novel heat recovery model into a gas turbine power plant, producing electricity, heat, and methanol," Energy, Elsevier, vol. 296(C).
  33. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
  34. Osat, Mohammad & Shojaati, Faryar & Osat, Mojtaba, 2023. "A solar-biomass system associated with CO2 capture, power generation and waste heat recovery for syngas production from rice straw and microalgae: Technological, energy, exergy, exergoeconomic and env," Applied Energy, Elsevier, vol. 340(C).
  35. Fidelis. I. Abam & Ogheneruona E. Diemuodeke & Ekwe. B. Ekwe & Mohammed Alghassab & Olusegun D. Samuel & Zafar A. Khan & Muhammad Imran & Muhammad Farooq, 2020. "Exergoeconomic and Environmental Modeling of Integrated Polygeneration Power Plant with Biomass-Based Syngas Supplemental Firing," Energies, MDPI, vol. 13(22), pages 1-27, November.
  36. Hafiz Muhammad Uzair Ayub & Sang Jin Park & Michael Binns, 2020. "Biomass to Syngas: Modified Non-Stoichiometric Thermodynamic Models for the Downdraft Biomass Gasification," Energies, MDPI, vol. 13(21), pages 1-17, October.
  37. Minutillo, Mariagiovanna & Perna, Alessandra & Sorce, Alessandro, 2020. "Green hydrogen production plants via biogas steam and autothermal reforming processes: energy and exergy analyses," Applied Energy, Elsevier, vol. 277(C).
  38. Ahmed Al-Nini & Hamdan Haji Ya & Najib Al-Mahbashi & Hilmi Hussin, 2023. "A Review on Green Cooling: Exploring the Benefits of Sustainable Energy-Powered District Cooling with Thermal Energy Storage," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
  39. Pietrasanta, Ariana M. & Mussati, Sergio F. & Aguirre, Pio A. & Morosuk, Tatiana & Mussati, Miguel C., 2022. "Optimization of a multi-generation power, desalination, refrigeration and heating system," Energy, Elsevier, vol. 238(PB).
  40. Alijanpour sheshpoli, Mohamad & Mousavi Ajarostaghi, Seyed Soheil & Delavar, Mojtaba Aghajani, 2018. "Waste heat recovery from a 1180 kW proton exchange membrane fuel cell (PEMFC) system by Recuperative organic Rankine cycle (RORC)," Energy, Elsevier, vol. 157(C), pages 353-366.
  41. Suleman, F. & Dincer, I. & Agelin-Chaab, M., 2014. "Development of an integrated renewable energy system for multigeneration," Energy, Elsevier, vol. 78(C), pages 196-204.
  42. Mustapha Mukhtar & Victor Adebayo & Nasser Yimen & Olusola Bamisile & Emmanuel Osei-Mensah & Humphrey Adun & Qinxiu Zhang & Gexin Luo, 2022. "Towards Global Cleaner Energy and Hydrogen Production: A Review and Application ORC Integrality with Multigeneration Systems," Sustainability, MDPI, vol. 14(9), pages 1-25, April.
  43. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
  44. Li, Nianqi & Chen, Jian & Cheng, Tao & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Wang, Qiuwang & Yang, Weisheng & Liu, Xia & Zeng, Min, 2020. "Analysing thermal-hydraulic performance and energy efficiency of shell-and-tube heat exchangers with longitudinal flow based on experiment and numerical simulation," Energy, Elsevier, vol. 202(C).
  45. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
  46. Kang, Lixia & Tang, Jianping & Liu, Yongzhong, 2020. "Optimal design of an organic Rankine cycle system considering the expected variations on heat sources," Energy, Elsevier, vol. 213(C).
  47. Hassan, Anas M. & Ayoub, M. & Eissa, M. & Musa, T. & Bruining, Hans & Farajzadeh, R., 2019. "Exergy return on exergy investment analysis of natural-polymer (Guar-Arabic gum) enhanced oil recovery process," Energy, Elsevier, vol. 181(C), pages 162-172.
  48. Lythcke-Jørgensen, Christoffer & Ensinas, Adriano Viana & Münster, Marie & Haglind, Fredrik, 2016. "A methodology for designing flexible multi-generation systems," Energy, Elsevier, vol. 110(C), pages 34-54.
  49. Zhang, Mingming & Timoshin, Anton & Al-Ammar, Essam A. & Sillanpaa, Mika & Zhang, Guiju, 2023. "Power, cooling, freshwater, and hydrogen production system from a new integrated system working with the zeotropic mixture, using a flash-binary geothermal system," Energy, Elsevier, vol. 263(PD).
  50. Almahdi, M. & Dincer, I. & Rosen, M.A., 2016. "A new solar based multigeneration system with hot and cold thermal storages and hydrogen production," Renewable Energy, Elsevier, vol. 91(C), pages 302-314.
  51. Sevinchan, Eren & Dincer, Ibrahim & Lang, Haoxiang, 2019. "Energy and exergy analyses of a biogas driven multigenerational system," Energy, Elsevier, vol. 166(C), pages 715-723.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.