IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220308641.html
   My bibliography  Save this article

Analysing thermal-hydraulic performance and energy efficiency of shell-and-tube heat exchangers with longitudinal flow based on experiment and numerical simulation

Author

Listed:
  • Li, Nianqi
  • Chen, Jian
  • Cheng, Tao
  • Klemeš, Jiří Jaromír
  • Varbanov, Petar Sabev
  • Wang, Qiuwang
  • Yang, Weisheng
  • Liu, Xia
  • Zeng, Min

Abstract

In this study, diverse baffled longitudinal flow shell-and-tube heat exchangers (STHX) are contrasted with segmental baffle shell-and-tube heat exchanger (SG-STHX). Experimental data are obtained with municipal water served as the working fluid, and the shell-side volume flow rate ranges from 1.79 m3/h to 7.42 m3/h. The components of the shell-side pressure drop are discussed stand on different flow patterns. The maximum proportion of pressure drop in tube bundle section of rod baffle shell-and-tube heat exchanger (RB-STHX) is 12%, while it has nearly taken up 70% shell-side pressure drop for both SG-STHX and large-and-small hole baffle shell-and-tube heat exchanger (LSHB-STHX). The energy efficiency of three tested STHXs is deliberated from three perspectives, including entropy generation, exergy destruction, and efficiency evaluation criterion. The longitudinal flow pattern performed superior energy efficiency, particularly for RB-STHX with the least irreversible energy loss and the most available work. Grounded on the energy-saving potential of RB-STHX, further numerical simulations on the shell-side thermo-hydraulic performance of RB-STHX are conducted. The nexus between geometrical parameters of RB-STHX and its thermal-hydraulic performance are studied. The thermal-hydraulic performance and energy efficiency discussed in this study support further design and application of longitudinal flow STHX to retain inherent superiorities with advanced performance.

Suggested Citation

  • Li, Nianqi & Chen, Jian & Cheng, Tao & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Wang, Qiuwang & Yang, Weisheng & Liu, Xia & Zeng, Min, 2020. "Analysing thermal-hydraulic performance and energy efficiency of shell-and-tube heat exchangers with longitudinal flow based on experiment and numerical simulation," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308641
    DOI: 10.1016/j.energy.2020.117757
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220308641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117757?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2013. "Development and assessment of an integrated biomass-based multi-generation energy system," Energy, Elsevier, vol. 56(C), pages 155-166.
    2. Pierobon, Leonardo & Nguyen, Tuong-Van & Larsen, Ulrik & Haglind, Fredrik & Elmegaard, Brian, 2013. "Multi-objective optimization of organic Rankine cycles for waste heat recovery: Application in an offshore platform," Energy, Elsevier, vol. 58(C), pages 538-549.
    3. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    4. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    5. Qiu, Yu & Li, Ming-Jia & Wang, Wen-Qi & Du, Bao-Cun & Wang, Kun, 2018. "An experimental study on the heat transfer performance of a prototype molten-salt rod baffle heat exchanger for concentrated solar power," Energy, Elsevier, vol. 156(C), pages 63-72.
    6. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    7. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    8. Bahiraei, Mehdi & Hangi, Morteza & Saeedan, Mahdi, 2015. "A novel application for energy efficiency improvement using nanofluid in shell and tube heat exchanger equipped with helical baffles," Energy, Elsevier, vol. 93(P2), pages 2229-2240.
    9. Manjunath, K. & Kaushik, S.C., 2014. "Second law thermodynamic study of heat exchangers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 348-374.
    10. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    11. Yang, Jian-Feng & Lin, Yuan-Sheng & Ke, Han-Bing & Zeng, Min & Wang, Qiu-Wang, 2016. "Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles," Energy, Elsevier, vol. 115(P3), pages 1572-1579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wojciech Judt, 2020. "Numerical and Experimental Analysis of Heat Transfer for Solid Fuels Combustion in Fixed Bed Conditions," Energies, MDPI, vol. 13(22), pages 1-18, November.
    2. Liu, Hanyu & Xi, Kun & Xie, Zhihui & Lu, Zhuoqun & Chen, Huawei & Zhang, Jian & Ge, Yanlin, 2023. "Constructal design of double-layer asymmetric flower baffles," Energy, Elsevier, vol. 280(C).
    3. Mashoofi Maleki, Nemat & Pourahmad, Saman & Haghighi Khoshkhoo, Ramin & Ameri, Mohammad, 2023. "Performance improvement of a double tube heat exchanger using novel electromagnetic vibration (EMV) method in the presence of Al2O3-water and CuO-water nanofluid; An experimental study," Energy, Elsevier, vol. 281(C).
    4. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    5. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network optimisation considering different shell-side flow arrangements," Energy, Elsevier, vol. 261(PA).
    6. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Jian & Li, Nianqi & Ding, Yu & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Wang, Qiuwang & Zeng, Min, 2020. "Experimental thermal-hydraulic performances of heat exchangers with different baffle patterns," Energy, Elsevier, vol. 205(C).
    2. Marcin Jankowski & Aleksandra Borsukiewicz, 2020. "A Novel Exergy Indicator for Maximizing Energy Utilization in Low-Temperature ORC," Energies, MDPI, vol. 13(7), pages 1-20, April.
    3. Yi, Zhitong & Luo, Xianglong & Chen, Jianyong & Chen, Ying, 2017. "Mathematical modelling and optimization of a liquid separation condenser-based organic Rankine cycle used in waste heat utilization," Energy, Elsevier, vol. 139(C), pages 916-934.
    4. Yin, Qian & Du, Wen-Jing & Cheng, Lin, 2017. "Optimization design of heat recovery systems on rotary kilns using genetic algorithms," Applied Energy, Elsevier, vol. 202(C), pages 153-168.
    5. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    6. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
    7. Möhren, S. & Meyer, J. & Krause, H. & Saars, L., 2021. "A multiperiod approach for waste heat and renewable energy integration of industrial sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. d'Amore-Domenech, Rafael & Leo, Teresa J. & Pollet, Bruno G., 2021. "Bulk power transmission at sea: Life cycle cost comparison of electricity and hydrogen as energy vectors," Applied Energy, Elsevier, vol. 288(C).
    9. Anahita Moharamian & Saeed Soltani & Faramarz Ranjbar & Mortaza Yari & Marc A Rosen, 2017. "Thermodynamic analysis of a wall mounted gas boiler with an organic Rankine cycle and hydrogen production unit," Energy & Environment, , vol. 28(7), pages 725-743, November.
    10. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    11. Bejan, Adrian, 2018. "Thermodynamics today," Energy, Elsevier, vol. 160(C), pages 1208-1219.
    12. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    13. Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
    14. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    15. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    16. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    17. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    18. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2014. "Thermoeconomic multi-objective optimization of a novel biomass-based integrated energy system," Energy, Elsevier, vol. 68(C), pages 958-970.
    19. Yang, Jian-Feng & Lin, Yuan-Sheng & Ke, Han-Bing & Zeng, Min & Wang, Qiu-Wang, 2016. "Investigation on combined multiple shell-pass shell-and-tube heat exchanger with continuous helical baffles," Energy, Elsevier, vol. 115(P3), pages 1572-1579.
    20. Weiwei Cui & Biao Lu, 2020. "A Bi-Objective Approach to Minimize Makespan and Energy Consumption in Flow Shops with Peak Demand Constraint," Sustainability, MDPI, vol. 12(10), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220308641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.