IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v171y2019icp69-76.html
   My bibliography  Save this item

Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chen, Yingqi & Ba, Shusong & Yang, Qing & Yuan, Tian & Zhao, Haibo & Zhou, Ming & Bartocci, Pietro & Fantozzi, Francesco, 2021. "Efficiency of China’s carbon market: A case study of Hubei pilot market," Energy, Elsevier, vol. 222(C).
  2. Zhao, Lili & Wen, Fenghua, 2022. "Risk-return relationship and structural breaks: Evidence from China carbon market," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 481-492.
  3. Ding, Lili & Zhang, Rui & Zhao, Xin, 2024. "Forecasting carbon price in China unified carbon market using a novel hybrid method with three-stage algorithm and long short-term memory neural networks," Energy, Elsevier, vol. 288(C).
  4. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
  5. Chang, Kai & Ye, Zhifang & Wang, Weihong, 2019. "Volatility spillover effect and dynamic correlation between regional emissions allowances and fossil energy markets: New evidence from China’s emissions trading scheme pilots," Energy, Elsevier, vol. 185(C), pages 1314-1324.
  6. Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
  7. Liao, Haolan & Wu, Di & Wang, Yuhan & Lyu, Zeyu & Sun, Hongmei & Nie, Yongyou & He, He, 2022. "Impacts of carbon trading mechanism on closed-loop supply chain: A case study of stringer pallet remanufacturing," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
  8. Huang, Xinya & Wang, Yufeng & Li, Houjian, 2024. "Exploring the asymmetric influence of economic policy uncertainty on the nonlinear relationship between exchange rate and carbon prices in China," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
  9. Wang, Jujie & Zhuang, Zhenzhen & Gao, Dongming, 2023. "An enhanced hybrid model based on multiple influencing factors and divide-conquer strategy for carbon price prediction," Omega, Elsevier, vol. 120(C).
  10. Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
  11. Wei Sun & Junjian Zhang, 2020. "Carbon Price Prediction Based on Ensemble Empirical Mode Decomposition and Extreme Learning Machine Optimized by Improved Bat Algorithm Considering Energy Price Factors," Energies, MDPI, vol. 13(13), pages 1-22, July.
  12. Wanhai You & Yuming Huang & Chien‐Chiang Lee, 2024. "Forecasting tourist flows in the COVID‐19 era using nonparametric mixed‐frequency VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 473-489, March.
  13. Miguel A. Jaramillo-Morán & Daniel Fernández-Martínez & Agustín García-García & Diego Carmona-Fernández, 2021. "Improving Artificial Intelligence Forecasting Models Performance with Data Preprocessing: European Union Allowance Prices Case Study," Energies, MDPI, vol. 14(23), pages 1-23, November.
  14. Cheng, Fenfen & Yang, Shanlin & Zhou, Kaile, 2020. "Quantile partial adjustment model with application to predicting energy demand in China," Energy, Elsevier, vol. 191(C).
  15. Sun, Wei & Zhang, Junjian, 2022. "A novel carbon price prediction model based on optimized least square support vector machine combining characteristic-scale decomposition and phase space reconstruction," Energy, Elsevier, vol. 253(C).
  16. Jujie Wang & Shiyao Qiu, 2021. "Improved Multi-Scale Deep Integration Paradigm for Point and Interval Carbon Trading Price Forecasting," Mathematics, MDPI, vol. 9(20), pages 1-20, October.
  17. Parviz Sohrabi & Behshad Jodeiri Shokri & Hesam Dehghani, 2023. "Predicting coal price using time series methods and combination of radial basis function (RBF) neural network with time series," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 207-216, June.
  18. Beibei Hu & Yunhe Cheng, 2023. "Prediction of Regional Carbon Price in China Based on Secondary Decomposition and Nonlinear Error Correction," Energies, MDPI, vol. 16(11), pages 1-22, May.
  19. Bangzhu Zhu & Jingyi Zhang & Chunzhuo Wan & Julien Chevallier & Ping Wang, 2023. "An evolutionary cost‐sensitive support vector machine for carbon price trend forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 741-755, July.
  20. Dong, Xiyong & Zhang, John F., 2024. "Heterogeneity of regional carbon emission markets in China: Evidence from multidimensional determinants," Energy Economics, Elsevier, vol. 138(C).
  21. Qi, Shaozhou & Cheng, Shihan & Tan, Xiujie & Feng, Shenghao & Zhou, Qi, 2022. "Predicting China's carbon price based on a multi-scale integrated model," Applied Energy, Elsevier, vol. 324(C).
  22. Laura Böhm & Sebastian Kolb & Thomas Plankenbühler & Jonas Miederer & Simon Markthaler & Jürgen Karl, 2023. "Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 16(18), pages 1-25, September.
  23. Qin, Chaoyong & Qin, Dongling & Jiang, Qiuxian & Zhu, Bangzhu, 2024. "Forecasting carbon price with attention mechanism and bidirectional long short-term memory network," Energy, Elsevier, vol. 299(C).
  24. Li, Houjian & Li, Qingman & Huang, Xinya & Guo, Lili, 2023. "Do green bonds and economic policy uncertainty matter for carbon price? New insights from a TVP-VAR framework," International Review of Financial Analysis, Elsevier, vol. 86(C).
  25. Yunhe Cheng & Beibei Hu, 2022. "Forecasting Regional Carbon Prices in China Based on Secondary Decomposition and a Hybrid Kernel-Based Extreme Learning Machine," Energies, MDPI, vol. 15(10), pages 1-18, May.
  26. Li, Guohui & Ning, Zhiyuan & Yang, Hong & Gao, Lipeng, 2022. "A new carbon price prediction model," Energy, Elsevier, vol. 239(PD).
  27. Jianguo Zhou & Dongfeng Chen, 2021. "Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
  28. Wen, Fenghua & Zhao, Haocen & Zhao, Lili & Yin, Hua, 2022. "What drive carbon price dynamics in China?," International Review of Financial Analysis, Elsevier, vol. 79(C).
  29. Xu, Yingying & Dai, Yifan & Guo, Lingling & Chen, Jingjing, 2024. "Leveraging machine learning to forecast carbon returns: Factors from energy markets," Applied Energy, Elsevier, vol. 357(C).
  30. Zhao, Lili & Wen, Fenghua & Wang, Xiong, 2020. "Interaction among China carbon emission trading markets: Nonlinear Granger causality and time-varying effect," Energy Economics, Elsevier, vol. 91(C).
  31. Wu, Siping & Xia, Guilin & Liu, Lang, 2023. "A novel decomposition integration model for power coal price forecasting," Resources Policy, Elsevier, vol. 80(C).
  32. Jianguo Zhou & Qiqi Wang, 2021. "Forecasting Carbon Price with Secondary Decomposition Algorithm and Optimized Extreme Learning Machine," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
  33. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
  34. Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
  35. Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
  36. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
  37. Po Yun & Chen Zhang & Yaqi Wu & Yu Yang, 2022. "Forecasting Carbon Dioxide Price Using a Time-Varying High-Order Moment Hybrid Model of NAGARCHSK and Gated Recurrent Unit Network," IJERPH, MDPI, vol. 19(2), pages 1-19, January.
  38. Zhang, Lihong & Wang, Jun & Wang, Bin, 2020. "Energy market prediction with novel long short-term memory network: Case study of energy futures index volatility," Energy, Elsevier, vol. 211(C).
  39. Sun, Qingqing & Chen, Hong & Long, Ruyin & Chen, Jiawei, 2024. "Integrated prediction of carbon price in China based on heterogeneous structural information and wall-value constraints," Energy, Elsevier, vol. 306(C).
  40. Sushree Subhaprada Pradhan & Sibarama Panigrahi, 2024. "A study and development of high‐order fuzzy time series forecasting methods for air quality index forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2635-2658, November.
  41. Weng, Zhixiong & Liu, Tingting & Wu, Yufeng & Cheng, Cuiyun, 2022. "Air quality improvement effect and future contributions of carbon trading pilot programs in China," Energy Policy, Elsevier, vol. 170(C).
  42. Jianguo Zhou & Shiguo Wang, 2021. "A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors," Energies, MDPI, vol. 14(5), pages 1-20, March.
  43. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
  44. Li, Zheng-Zheng & Su, Chi-Wei & Chang, Tsangyao & Lobonţ, Oana-Ramona, 2022. "Policy-driven or market-driven? Evidence from steam coal price bubbles in China," Resources Policy, Elsevier, vol. 78(C).
  45. Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
  46. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
  47. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
  48. Kou, Mingting & Zhang, Menglin & Yang, Yuanqi & Shao, Hanqing, 2024. "Energy finance research: What happens beneath the literature?," International Review of Financial Analysis, Elsevier, vol. 95(PB).
  49. Zhang, Wen & Wu, Zhibin & Zeng, Xiaojun & Zhu, Changhui, 2023. "An ensemble dynamic self-learning model for multiscale carbon price forecasting," Energy, Elsevier, vol. 263(PC).
  50. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.