IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p455-d1579981.html
   My bibliography  Save this article

A Novel Multi-Task Learning Framework for Interval-Valued Carbon Price Forecasting Using Online News and Search Engine Data

Author

Listed:
  • Dinggao Liu

    (College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    These authors contributed equally to this work.)

  • Liuqing Wang

    (College of Economics and Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    These authors contributed equally to this work.)

  • Shuo Lin

    (College of Economics and Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    These authors contributed equally to this work.)

  • Zhenpeng Tang

    (College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    College of Economics and Management, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract

The European Union Emissions Trading System (EU ETS) serves as the cornerstone of European climate policy, providing a critical mechanism for mitigating greenhouse gas emissions. Accurate forecasting of the carbon allowance prices within the market is essential for policymakers, enterprises, and investors. To address the need for interval-valued time series modeling and forecasting in the carbon market, this paper proposes a Transformer-based multi-task learning framework that integrates online news and search engine data information to forecast interval-valued EU carbon allowance futures prices. Empirical evaluations demonstrate that the proposed framework achieves superior predictive accuracy for short-term forecasting and remains robust under high market volatility and economic policy uncertainty compared to single-task learning benchmarks. Furthermore, ablation experiments indicate that incorporating news sentiment intensity and search index effectively enhances the framework’s predictive performance. Interpretability analysis highlights the critical role of specific temporal factors, while the time-varying variable importance analysis further underscores the influence of carbon allowance close prices and key energy market variables and also recognizes the contributions of news sentiment. In summary, this study provides valuable insights for policy management, risk hedging, and portfolio decision-making related to interval-valued EU carbon prices and offers a robust forecasting tool for carbon market prediction.

Suggested Citation

  • Dinggao Liu & Liuqing Wang & Shuo Lin & Zhenpeng Tang, 2025. "A Novel Multi-Task Learning Framework for Interval-Valued Carbon Price Forecasting Using Online News and Search Engine Data," Mathematics, MDPI, vol. 13(3), pages 1-23, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:455-:d:1579981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/455/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/455/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kazeem O. Isah & Johnson O. Adelakun & Elias A. Udeaja, 2024. "Experimenting with the Forecasting Power of Speculation in the Predictability of Carbon Prices," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 60(12), pages 2691-2702, September.
    2. Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
    3. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    4. Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
    5. Yang, Kun & Cheng, Zishu & Li, Mingchen & Wang, Shouyang & Wei, Yunjie, 2024. "Fortify the investment performance of crude oil market by integrating sentiment analysis and an interval-based trading strategy," Applied Energy, Elsevier, vol. 353(PA).
    6. Xu Gong & Mengjie Li & Keqin Guan & Chuanwang Sun, 2023. "Climate change attention and carbon futures return prediction," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(9), pages 1261-1288, September.
    7. Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
    8. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
    9. Tan, Mao & Liao, Chengchen & Chen, Jie & Cao, Yijia & Wang, Rui & Su, Yongxin, 2023. "A multi-task learning method for multi-energy load forecasting based on synthesis correlation analysis and load participation factor," Applied Energy, Elsevier, vol. 343(C).
    10. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
    11. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    12. Cristiano Salvagnin & Aldo Glielmo & Maria Elena De Giuli & Antonietta Mira, 2024. "Investigating the price determinants of the European Emission Trading System: a non-parametric approach," Quantitative Finance, Taylor & Francis Journals, vol. 24(10), pages 1529-1544, October.
    13. Ye, Jing & Xue, Minggao, 2021. "Influences of sentiment from news articles on EU carbon prices," Energy Economics, Elsevier, vol. 101(C).
    14. Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
    15. Zheng, Li & Sun, Yuying & Wang, Shouyang, 2024. "A novel interval-based hybrid framework for crude oil price forecasting and trading," Energy Economics, Elsevier, vol. 130(C).
    16. Lovcha, Yuliya & Perez-Laborda, Alejandro & Sikora, Iryna, 2022. "The determinants of CO2 prices in the EU emission trading system," Applied Energy, Elsevier, vol. 305(C).
    17. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    18. Niu, Xinsong & Wang, Jiyang & Wei, Danxiang & Zhang, Lifang, 2022. "A combined forecasting framework including point prediction and interval prediction for carbon emission trading prices," Renewable Energy, Elsevier, vol. 201(P1), pages 46-59.
    19. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    20. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    21. Zhu, Bangzhu & Wan, Chunzhuo & Wang, Ping, 2022. "Interval forecasting of carbon price: A novel multiscale ensemble forecasting approach," Energy Economics, Elsevier, vol. 115(C).
    22. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    23. Sayed, Gehad Ismail & Abd El-Latif, Eman I. & Darwish, Ashraf & Snasel, Vaclav & Hassanien, Aboul Ella, 2024. "An optimized and interpretable carbon price prediction: Explainable deep learning model," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
    24. Yang, Dongchuan & Guo, Ju-e & Sun, Shaolong & Han, Jing & Wang, Shouyang, 2022. "An interval decomposition-ensemble approach with data-characteristic-driven reconstruction for short-term load forecasting," Applied Energy, Elsevier, vol. 306(PA).
    25. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    26. Li, Ke & Mu, Yuchen & Yang, Fan & Wang, Haiyang & Yan, Yi & Zhang, Chenghui, 2024. "Joint forecasting of source-load-price for integrated energy system based on multi-task learning and hybrid attention mechanism," Applied Energy, Elsevier, vol. 360(C).
    27. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    28. Jian Liu & Ziting Zhang & Lizhao Yan & Fenghua Wen, 2021. "Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    29. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    30. Sun, Shaolong & Sun, Yuying & Wang, Shouyang & Wei, Yunjie, 2018. "Interval decomposition ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 76(C), pages 274-287.
    31. Wenyang Huang & Huiwen Wang & Haotong Qin & Yigang Wei & Julien Chevallier, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Post-Print halshs-04250297, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
    2. Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
    3. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    4. Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
    5. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
    6. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
    7. Zhang, Wen & Wu, Zhibin & Zeng, Xiaojun & Zhu, Changhui, 2023. "An ensemble dynamic self-learning model for multiscale carbon price forecasting," Energy, Elsevier, vol. 263(PC).
    8. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
    9. Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    10. Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
    11. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    12. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
    13. Ding, Lili & Zhang, Rui & Zhao, Xin, 2024. "Forecasting carbon price in China unified carbon market using a novel hybrid method with three-stage algorithm and long short-term memory neural networks," Energy, Elsevier, vol. 288(C).
    14. Qi, Shaozhou & Cheng, Shihan & Tan, Xiujie & Feng, Shenghao & Zhou, Qi, 2022. "Predicting China's carbon price based on a multi-scale integrated model," Applied Energy, Elsevier, vol. 324(C).
    15. Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
    16. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    17. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
    18. Wang, Jujie & Zhuang, Zhenzhen & Gao, Dongming, 2023. "An enhanced hybrid model based on multiple influencing factors and divide-conquer strategy for carbon price prediction," Omega, Elsevier, vol. 120(C).
    19. Yumin Li & Ruiqi Yang & Xiaoman Wang & Jiaming Zhu & Nan Song, 2023. "Carbon Price Combination Forecasting Model Based on Lasso Regression and Optimal Integration," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
    20. Wang, Jujie & Xu, Shulian & Shu, Shuqin, 2024. "An optimal weight heterogeneous integrated carbon price prediction model based on temporal information extraction and specific comprehensive feature selection," Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:455-:d:1579981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.