Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2831
Download full text from publisher
References listed on IDEAS
- Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
- Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
- Kazushi Maruo & Takaharu Yamabe & Yusuke Yamaguchi, 2017. "Statistical simulation based on right skewed distributions," Computational Statistics, Springer, vol. 32(3), pages 889-907, September.
- Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
- Raphael Calel & Antoine Dechezleprêtre, 2016.
"Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
- Raphael Calel & Antoine Dechezlepretre, 2012. "Environmental Policy and Directed Technological Change: Evidence from the European carbon market," Working Papers 1208, Chaire Economie du climat.
- Calel, Raphael & Dechezlepretre, Antoine, 2016. "Environmental policy and directed technological change: evidence from the European carbon market," LSE Research Online Documents on Economics 62723, London School of Economics and Political Science, LSE Library.
- Raphael Calel & Antoine Dechezleprêtre, 2012. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," Working Papers 2012.22, Fondazione Eni Enrico Mattei.
- Rafael Calel & Antoine Dechezlepr�tre, 2012. "Environmental policy and directed technological change: evidence from the European carbon maket," GRI Working Papers 75, Grantham Research Institute on Climate Change and the Environment.
- Calel, Raphael & Dechezlepretre, Antoine, 2012. "Environmental Policy and Directed Technological Change: Evidence from the European carbon market," Climate Change and Sustainable Development 122867, Fondazione Eni Enrico Mattei (FEEM).
- Calel, Raphael & Dechezlepretre, Antoine, 2013. "Environmental policy and directed technological change: evidence from the European carbon market," LSE Research Online Documents on Economics 121774, London School of Economics and Political Science, LSE Library.
- Raphael Calel & Antoine Dechezleprêtre, 2012. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," CEP Discussion Papers dp1141, Centre for Economic Performance, LSE.
- repec:dau:papers:123456789/4210 is not listed on IDEAS
- Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
- World Bank, "undated". "State and Trends of Carbon Pricing 2020 [Situación y tendencias de la fijación del precio al carbono 2020]," World Bank Publications - Reports 33809, The World Bank Group.
- Borissov, Kirill & Brausmann, Alexandra & Bretschger, Lucas, 2019.
"Carbon pricing, technology transition, and skill-based development,"
European Economic Review, Elsevier, vol. 118(C), pages 252-269.
- Kirill Borissov & Lucas Bretschger & Alexandra Vinogradova, 2018. "Carbon Pricing, Technology Transition, and Skill-Based Development," CER-ETH Economics working paper series 18/285, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
- Kirill Borissov & Lucas Bretschger, 2018. "Carbon Pricing, Technology Transition, and Skill-Based Development," CER-ETH Economics working paper series 18/297, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
- Sun, Wei & Huang, Chenchen, 2020. "A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network," Energy, Elsevier, vol. 207(C).
- Andrea Baranzini & Jeroen C. J. M. van den Bergh & Stefano Carattini & Richard B. Howarth & Emilio Padilla & Jordi Roca, 2017.
"Carbon pricing in climate policy: seven reasons, complementary instruments, and political economy considerations,"
Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(4), July.
- Baranzini, Andrea & van den Bergh, Jeroen C. J. M. & Carattini, Stefano & Howarth, Richard B. & Padilla, Emilio & Roca, Jordi, 2017. "Carbon pricing in climate policy: seven reasons, complementary instruments, and political economy considerations," LSE Research Online Documents on Economics 84042, London School of Economics and Political Science, LSE Library.
- Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
- Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Afees A. Salisu & Ahamuefula E. Ogbonna & Idris Adediran, 2021. "Stock‐induced Google trends and the predictability of sectoral stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 327-345, March.
- Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
- Yue‐Jun Zhang & Jin‐Liang Zhang, 2018. "Volatility forecasting of crude oil market: A new hybrid method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 781-789, December.
- E, Jianwei & Ye, Jimin & Jin, Haihong, 2019. "A novel hybrid model on the prediction of time series and its application for the gold price analysis and forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
- Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
- Zhu, Bangzhu & Yuan, Lili & Ye, Shunxin, 2019. "Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 392-399.
- Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
- Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
- Easwaran Narassimhan & Kelly S. Gallagher & Stefan Koester & Julio Rivera Alejo, 2018. "Carbon pricing in practice: a review of existing emissions trading systems," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 967-991, September.
- Chevallier, Julien, 2011. "Nonparametric modeling of carbon prices," Energy Economics, Elsevier, vol. 33(6), pages 1267-1282.
- Cheng Lian & Zhigang Zeng & Wei Yao & Huiming Tang, 2013. "Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 759-771, March.
- Ajay K. Dhamija & Surendra S. Yadav & PK Jain, 2017. "Forecasting volatility of carbon under EU ETS: a multi-phase study," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 299-335, April.
- repec:dau:papers:123456789/6791 is not listed on IDEAS
- Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bai, Yun & Deng, Shuyun & Pu, Ziqiang & Li, Chuan, 2024. "Carbon price forecasting using leaky integrator echo state networks with the framework of decomposition-reconstruction-integration," Energy, Elsevier, vol. 305(C).
- Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
- Li, Ranran, 2023. "Forecasting energy spot prices: A multiscale clustering recognition approach," Resources Policy, Elsevier, vol. 81(C).
- Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
- Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
- Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
- Po Yun & Chen Zhang & Yaqi Wu & Yu Yang, 2022. "Forecasting Carbon Dioxide Price Using a Time-Varying High-Order Moment Hybrid Model of NAGARCHSK and Gated Recurrent Unit Network," IJERPH, MDPI, vol. 19(2), pages 1-19, January.
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Yumin Li & Ruiqi Yang & Xiaoman Wang & Jiaming Zhu & Nan Song, 2023. "Carbon Price Combination Forecasting Model Based on Lasso Regression and Optimal Integration," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
- Qi, Shaozhou & Cheng, Shihan & Tan, Xiujie & Feng, Shenghao & Zhou, Qi, 2022. "Predicting China's carbon price based on a multi-scale integrated model," Applied Energy, Elsevier, vol. 324(C).
- Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
- Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
- Jianguo Zhou & Shiguo Wang, 2021. "A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors," Energies, MDPI, vol. 14(5), pages 1-20, March.
- Jianguo Zhou & Dongfeng Chen, 2021. "Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
- Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
- Qin, Chaoyong & Qin, Dongling & Jiang, Qiuxian & Zhu, Bangzhu, 2024. "Forecasting carbon price with attention mechanism and bidirectional long short-term memory network," Energy, Elsevier, vol. 299(C).
- Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
- Jianguo Zhou & Qiqi Wang, 2021. "Forecasting Carbon Price with Secondary Decomposition Algorithm and Optimized Extreme Learning Machine," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
- Po Yun & Chen Zhang & Yaqi Wu & Xianzi Yang & Zulfiqar Ali Wagan, 2020. "A Novel Extended Higher-Order Moment Multi-Factor Framework for Forecasting the Carbon Price: Testing on the Multilayer Long Short-Term Memory Network," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
- Peng Ye & Yong Li & Abu Bakkar Siddik, 2023. "Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm," Energies, MDPI, vol. 16(11), pages 1-39, June.
- Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:3:p:615-632. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.