Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2831
Download full text from publisher
References listed on IDEAS
- Kazushi Maruo & Takaharu Yamabe & Yusuke Yamaguchi, 2017. "Statistical simulation based on right skewed distributions," Computational Statistics, Springer, vol. 32(3), pages 889-907, September.
- Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
- Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
- Sun, Wei & Huang, Chenchen, 2020. "A novel carbon price prediction model combines the secondary decomposition algorithm and the long short-term memory network," Energy, Elsevier, vol. 207(C).
- Borissov, Kirill & Brausmann, Alexandra & Bretschger, Lucas, 2019.
"Carbon pricing, technology transition, and skill-based development,"
European Economic Review, Elsevier, vol. 118(C), pages 252-269.
- Kirill Borissov & Lucas Bretschger & Alexandra Vinogradova, 2018. "Carbon Pricing, Technology Transition, and Skill-Based Development," CER-ETH Economics working paper series 18/285, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
- Kirill Borissov & Lucas Bretschger, 2018. "Carbon Pricing, Technology Transition, and Skill-Based Development," CER-ETH Economics working paper series 18/297, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
- Andrea Baranzini & Jeroen C. J. M. van den Bergh & Stefano Carattini & Richard B. Howarth & Emilio Padilla & Jordi Roca, 2017.
"Carbon pricing in climate policy: seven reasons, complementary instruments, and political economy considerations,"
Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(4), July.
- Baranzini, Andrea & van den Bergh, Jeroen C. J. M. & Carattini, Stefano & Howarth, Richard B. & Padilla, Emilio & Roca, Jordi, 2017. "Carbon pricing in climate policy: seven reasons, complementary instruments, and political economy considerations," LSE Research Online Documents on Economics 84042, London School of Economics and Political Science, LSE Library.
- Xie, Peiran & Gao, Mingming & Zhang, Hongfu & Niu, Yuguang & Wang, Xiaowen, 2020. "Dynamic modeling for NOx emission sequence prediction of SCR system outlet based on sequence to sequence long short-term memory network," Energy, Elsevier, vol. 190(C).
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
- Yue‐Jun Zhang & Jin‐Liang Zhang, 2018. "Volatility forecasting of crude oil market: A new hybrid method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(8), pages 781-789, December.
- Raphael Calel & Antoine Dechezleprêtre, 2016.
"Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market,"
The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
- Raphael Calel & Antoine Dechezleprêtre, 2012. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," CEP Discussion Papers dp1141, Centre for Economic Performance, LSE.
- Raphael Calel & Antoine Dechezlepretre, 2012. "Environmental Policy and Directed Technological Change: Evidence from the European carbon market," Working Papers 1208, Chaire Economie du climat.
- Raphael Calel & Antoine Dechezleprêtre, 2012. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," Working Papers 2012.22, Fondazione Eni Enrico Mattei.
- Rafael Calel & Antoine Dechezlepr�tre, 2012. "Environmental policy and directed technological change: evidence from the European carbon maket," GRI Working Papers 75, Grantham Research Institute on Climate Change and the Environment.
- Calel, Raphael & Dechezlepretre, Antoine, 2012. "Environmental Policy and Directed Technological Change: Evidence from the European carbon market," Climate Change and Sustainable Development 122867, Fondazione Eni Enrico Mattei (FEEM).
- Calel, Raphael & Dechezlepretre, Antoine, 2013. "Environmental policy and directed technological change: evidence from the European carbon market," LSE Research Online Documents on Economics 121774, London School of Economics and Political Science, LSE Library.
- Calel, Raphael & Dechezlepretre, Antoine, 2016. "Environmental policy and directed technological change: evidence from the European carbon market," LSE Research Online Documents on Economics 62723, London School of Economics and Political Science, LSE Library.
- Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
- Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
- Easwaran Narassimhan & Kelly S. Gallagher & Stefan Koester & Julio Rivera Alejo, 2018. "Carbon pricing in practice: a review of existing emissions trading systems," Climate Policy, Taylor & Francis Journals, vol. 18(8), pages 967-991, September.
- Chevallier, Julien, 2011. "Nonparametric modeling of carbon prices," Energy Economics, Elsevier, vol. 33(6), pages 1267-1282.
- Cheng Lian & Zhigang Zeng & Wei Yao & Huiming Tang, 2013. "Displacement prediction model of landslide based on a modified ensemble empirical mode decomposition and extreme learning machine," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 759-771, March.
- repec:dau:papers:123456789/6791 is not listed on IDEAS
- Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
- Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
- Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
- repec:dau:papers:123456789/4210 is not listed on IDEAS
- World Bank, "undated". "State and Trends of Carbon Pricing 2020 [Situación y tendencias de la fijación del precio al carbono 2020]," World Bank Publications - Reports 33809, The World Bank Group.
- Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2008. "Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm," Energy Economics, Elsevier, vol. 30(5), pages 2623-2635, September.
- Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
- Afees A. Salisu & Ahamuefula E. Ogbonna & Idris Adediran, 2021. "Stock‐induced Google trends and the predictability of sectoral stock returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 327-345, March.
- E, Jianwei & Ye, Jimin & Jin, Haihong, 2019. "A novel hybrid model on the prediction of time series and its application for the gold price analysis and forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
- Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
- Zhu, Bangzhu & Yuan, Lili & Ye, Shunxin, 2019. "Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 392-399.
- Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
- Ajay K. Dhamija & Surendra S. Yadav & PK Jain, 2017. "Forecasting volatility of carbon under EU ETS: a multi-phase study," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 19(2), pages 299-335, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
- Li, Ranran, 2023. "Forecasting energy spot prices: A multiscale clustering recognition approach," Resources Policy, Elsevier, vol. 81(C).
- Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
- Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
- Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
- Po Yun & Chen Zhang & Yaqi Wu & Yu Yang, 2022. "Forecasting Carbon Dioxide Price Using a Time-Varying High-Order Moment Hybrid Model of NAGARCHSK and Gated Recurrent Unit Network," IJERPH, MDPI, vol. 19(2), pages 1-19, January.
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Yumin Li & Ruiqi Yang & Xiaoman Wang & Jiaming Zhu & Nan Song, 2023. "Carbon Price Combination Forecasting Model Based on Lasso Regression and Optimal Integration," Sustainability, MDPI, vol. 15(12), pages 1-26, June.
- Qi, Shaozhou & Cheng, Shihan & Tan, Xiujie & Feng, Shenghao & Zhou, Qi, 2022. "Predicting China's carbon price based on a multi-scale integrated model," Applied Energy, Elsevier, vol. 324(C).
- Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
- Jianguo Zhou & Shiguo Wang, 2021. "A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors," Energies, MDPI, vol. 14(5), pages 1-20, March.
- Jianguo Zhou & Dongfeng Chen, 2021. "Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
- Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
- Wang, Piao & Tao, Zhifu & Liu, Jinpei & Chen, Huayou, 2023. "Improving the forecasting accuracy of interval-valued carbon price from a novel multi-scale framework with outliers detection: An improved interval-valued time series analysis mode," Energy Economics, Elsevier, vol. 118(C).
- Houjian Li & Xinya Huang & Deheng Zhou & Andi Cao & Mengying Su & Yufeng Wang & Lili Guo, 2022. "Forecasting Carbon Price in China: A Multimodel Comparison," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
- Po Yun & Chen Zhang & Yaqi Wu & Xianzi Yang & Zulfiqar Ali Wagan, 2020. "A Novel Extended Higher-Order Moment Multi-Factor Framework for Forecasting the Carbon Price: Testing on the Multilayer Long Short-Term Memory Network," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
- Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
- Jujie Wang & Zhenzhen Zhuang, 2023. "A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6225-6247, July.
- Zhu, Jiaming & Wu, Peng & Chen, Huayou & Liu, Jinpei & Zhou, Ligang, 2019. "Carbon price forecasting with variational mode decomposition and optimal combined model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 140-158.
- Jujie Wang & Shiyao Qiu, 2021. "Improved Multi-Scale Deep Integration Paradigm for Point and Interval Carbon Trading Price Forecasting," Mathematics, MDPI, vol. 9(20), pages 1-20, October.
- Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:3:p:615-632. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.