IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v131y2024ics0140988324000616.html
   My bibliography  Save this article

A multiscale and multivariable differentiated learning for carbon price forecasting

Author

Listed:
  • Chen, Linfei
  • Zhao, Xuefeng

Abstract

Carbon price forecasting is important for policymakers and market participants. Due to the non-stationary and non-linearity of the carbon price, the commonly used methods adopt the ideology of ‘decomposition and integration’ to conduct multiscale forecasting. On this basis, multivariable forecasting discovers more informative knowledge with exogenous variables for carbon price forecasting, but it ignores that (i) the high-frequency and low-frequency components of the carbon price are mainly affected by different variables, and (ii) each variable contributes differently to each component forecasting. To address these challenges, we propose a multiscale and multivariable differentiated learning method for carbon price forecasting in this study. Specifically, different variables are introduced to forecast the high-frequency and low-frequency components, and a novel attention-weighted least squares support vector regression method is first proposed, in which the weight matrix of variables is constructed according to the idea of the attention mechanism. Furthermore, we analyze the contribution of each variable to the carbon price using Shapley additive explanations, thereby providing a reference for carbon market participants. We conduct experiments on the carbon price of the European Union Emissions Trading System and Hubei carbon market in China. Extensive results demonstrate that the proposed model achieves competitive and superior performance over the baseline and compared models.

Suggested Citation

  • Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:eneeco:v:131:y:2024:i:c:s0140988324000616
    DOI: 10.1016/j.eneco.2024.107353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324000616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Bataille & Céline Guivarch & Stephane Hallegatte & Joeri Rogelj & Henri Waisman, 2018. "Carbon prices across countries," Nature Climate Change, Nature, vol. 8(8), pages 648-650, August.
    2. Creti, Anna & Jouvet, Pierre-André & Mignon, Valérie, 2012. "Carbon price drivers: Phase I versus Phase II equilibrium?," Energy Economics, Elsevier, vol. 34(1), pages 327-334.
    3. Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sousa, Ricardo M., 2014. "What explain the short-term dynamics of the prices of CO2 emissions?," Energy Economics, Elsevier, vol. 46(C), pages 122-135.
    4. Zhu, Bangzhu & Wei, Yiming, 2013. "Carbon price forecasting with a novel hybrid ARIMA and least squares support vector machines methodology," Omega, Elsevier, vol. 41(3), pages 517-524.
    5. Zhu, Bangzhu & Ye, Shunxin & Han, Dong & Wang, Ping & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "A multiscale analysis for carbon price drivers," Energy Economics, Elsevier, vol. 78(C), pages 202-216.
    6. Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
    7. Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," Energy Economics, Elsevier, vol. 40(C), pages 222-232.
    8. Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
    9. Hammoudeh, Shawkat & Nguyen, Duc Khuong & Sousa, Ricardo M., 2014. "Energy prices and CO2 emission allowance prices: A quantile regression approach," Energy Policy, Elsevier, vol. 70(C), pages 201-206.
    10. Fan, Ying & Jia, Jun-Jun & Wang, Xin & Xu, Jin-Hua, 2017. "What policy adjustments in the EU ETS truly affected the carbon prices?," Energy Policy, Elsevier, vol. 103(C), pages 145-164.
    11. Chevallier, Julien & Khuong Nguyen, Duc & Carlos Reboredo, Juan, 2019. "A conditional dependence approach to CO2-energy price relationships," Energy Economics, Elsevier, vol. 81(C), pages 812-821.
    12. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "Carbon price volatility: Evidence from EU ETS," Applied Energy, Elsevier, vol. 88(3), pages 590-598, March.
    13. repec:dau:papers:123456789/4210 is not listed on IDEAS
    14. Byun, Suk Joon & Cho, Hangjun, 2013. "Forecasting carbon futures volatility using GARCH models with energy volatilities," Energy Economics, Elsevier, vol. 40(C), pages 207-221.
    15. Tan, Xue-Ping & Wang, Xin-Yu, 2017. "Dependence changes between the carbon price and its fundamentals: A quantile regression approach," Applied Energy, Elsevier, vol. 190(C), pages 306-325.
    16. Zhou, Sheng & Tong, Qing & Pan, Xunzhang & Cao, Min & Wang, Hailin & Gao, Ji & Ou, Xunmin, 2021. "Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective," Energy Economics, Elsevier, vol. 95(C).
    17. Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
    18. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    19. A. C. Christiansen & A. Arvanitakis & K. Tangen & H. Hasselknippe, 2005. "Price determinants in the EU emissions trading scheme," Climate Policy, Taylor & Francis Journals, vol. 5(1), pages 15-30, January.
    20. Wang, Deyun & Luo, Hongyuan & Grunder, Olivier & Lin, Yanbing, 2017. "Multi-step ahead wind speed forecasting using an improved wavelet neural network combining variational mode decomposition and phase space reconstruction," Renewable Energy, Elsevier, vol. 113(C), pages 1345-1358.
    21. Carratù, Maria & Chiarini, Bruno & Piselli, Paolo, 2020. "Effects of European emission unit allowance auctions on corporate profitability," Energy Policy, Elsevier, vol. 144(C).
    22. Chevallier, Julien, 2009. "Carbon futures and macroeconomic risk factors: A view from the EU ETS," Energy Economics, Elsevier, vol. 31(4), pages 614-625, July.
    23. Ren, Xiaohang & Duan, Kun & Tao, Lizhu & Shi, Yukun & Yan, Cheng, 2022. "Carbon prices forecasting in quantiles," Energy Economics, Elsevier, vol. 108(C).
    24. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    25. Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
    26. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    27. Zeng, Shihong & Nan, Xin & Liu, Chao & Chen, Jiuying, 2017. "The response of the Beijing carbon emissions allowance price (BJC) to macroeconomic and energy price indices," Energy Policy, Elsevier, vol. 106(C), pages 111-121.
    28. Paolella, Marc S. & Taschini, Luca, 2008. "An econometric analysis of emission allowance prices," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2022-2032, October.
    29. Bangzhu Zhu & Ping Wang & Julien Chevallier & Yiming Wei, 2015. "Carbon Price Analysis Using Empirical Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 195-206, February.
    30. Acikgoz, Hakan & Budak, Umit & Korkmaz, Deniz & Yildiz, Ceyhun, 2021. "WSFNet: An efficient wind speed forecasting model using channel attention-based densely connected convolutional neural network," Energy, Elsevier, vol. 233(C).
    31. Lin, Boqiang & Xu, Bin, 2021. "A non-parametric analysis of the driving factors of China's carbon prices," Energy Economics, Elsevier, vol. 104(C).
    32. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
    33. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.
    34. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    35. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    36. Liu, Hui & Mi, Xiwei & Li, Yanfei & Duan, Zhu & Xu, Yinan, 2019. "Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional Gated Recurrent Unit network and Support Vector Regression," Renewable Energy, Elsevier, vol. 143(C), pages 842-854.
    37. Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
    38. Wenyang Huang & Huiwen Wang & Haotong Qin & Yigang Wei & Julien Chevallier, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Post-Print halshs-04250297, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    2. Dai, Xingyu & Xiao, Ling & Wang, Qunwei & Dhesi, Gurjeet, 2021. "Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS," Energy Policy, Elsevier, vol. 156(C).
    3. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    4. Duan, Kun & Ren, Xiaohang & Shi, Yukun & Mishra, Tapas & Yan, Cheng, 2021. "The marginal impacts of energy prices on carbon price variations: Evidence from a quantile-on-quantile approach," Energy Economics, Elsevier, vol. 95(C).
    5. Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
    6. Lovcha, Yuliya & Perez-Laborda, Alejandro & Sikora, Iryna, 2022. "The determinants of CO2 prices in the EU emission trading system," Applied Energy, Elsevier, vol. 305(C).
    7. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    8. Katarzyna Rudnik & Anna Hnydiuk-Stefan & Aneta Kucińska-Landwójtowicz & Łukasz Mach, 2022. "Forecasting Day-Ahead Carbon Price by Modelling Its Determinants Using the PCA-Based Approach," Energies, MDPI, vol. 15(21), pages 1-23, October.
    9. Cristiano Salvagnin & Aldo Glielmo & Maria Elena De Giuli & Antonietta Mira, 2024. "Investigating the price determinants of the European Emission Trading System: a non-parametric approach," Papers 2406.05094, arXiv.org.
    10. Su, Chi Wei & Wei, Shenkai & Wang, Yan & Tao, Ran, 2024. "How does climate policy uncertainty affect the carbon market?," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    11. Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
    12. Wang, Jiqian & Guo, Xiaozhu & Tan, Xueping & Chevallier, Julien & Ma, Feng, 2023. "Which exogenous driver is informative in forecasting European carbon volatility: Bond, commodity, stock or uncertainty?," Energy Economics, Elsevier, vol. 117(C).
    13. Chen, Weidong & Xiong, Shi & Chen, Quanyu, 2022. "Characterizing the dynamic evolutionary behavior of multivariate price movement fluctuation in the carbon-fuel energy markets system from complex network perspective," Energy, Elsevier, vol. 239(PA).
    14. Huang, Wenyang & Wang, Huiwen & Wei, Yigang, 2023. "Identifying the determinants of European carbon allowances prices: A novel robust partial least squares method for open-high-low-close data," International Review of Financial Analysis, Elsevier, vol. 90(C).
    15. Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
    16. Xu, Jia & Tan, Xiujie & He, Gang & Liu, Yu, 2019. "Disentangling the drivers of carbon prices in China's ETS pilots — An EEMD approach," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 1-9.
    17. Chang, Kai & Ye, Zhifang & Wang, Weihong, 2019. "Volatility spillover effect and dynamic correlation between regional emissions allowances and fossil energy markets: New evidence from China’s emissions trading scheme pilots," Energy, Elsevier, vol. 185(C), pages 1314-1324.
    18. Wenjun Chu & Shanglei Chai & Xi Chen & Mo Du, 2020. "Does the Impact of Carbon Price Determinants Change with the Different Quantiles of Carbon Prices? Evidence from China ETS Pilots," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    19. Zhu, Bangzhu & Ye, Shunxin & Han, Dong & Wang, Ping & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "A multiscale analysis for carbon price drivers," Energy Economics, Elsevier, vol. 78(C), pages 202-216.
    20. Jianguo Zhou & Dongfeng Chen, 2021. "Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm," Sustainability, MDPI, vol. 13(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:131:y:2024:i:c:s0140988324000616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.