Predicting coal price using time series methods and combination of radial basis function (RBF) neural network with time series
Author
Abstract
Suggested Citation
DOI: 10.1007/s13563-021-00286-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Farmer, J. Doyne & Lafond, François, 2016.
"How predictable is technological progress?,"
Research Policy, Elsevier, vol. 45(3), pages 647-665.
- J. Doyne Farmer & Francois Lafond, 2015. "How predictable is technological progress?," Papers 1502.05274, arXiv.org, revised Nov 2015.
- Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
- Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
- Baomin Dong & Xuefeng Li & Boqiang Lin, 2010. "Forecasting Long‐Run Coal Price in China: A Shifting Trend Time‐Series Approach," Review of Development Economics, Wiley Blackwell, vol. 14(3), pages 499-519, August.
- Lance J. Bachmeier & James M. Griffin, 2006. "Testing for Market Integration: Crude Oil, Coal, and Natural Gas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 55-72.
- Robert S. Pindyck, 1999.
"The Long-Run Evolutions of Energy Prices,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-27.
- Robert S. Pindyck, 1999. "The Long-Run Evolution of Energy Prices," The Energy Journal, , vol. 20(2), pages 1-27, April.
- Pindyck, Robert S., 1998. "The long-run evolution of energy prices," Working papers WP 4044-98., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Matyjaszek, Marta & Riesgo Fernández, Pedro & Krzemień, Alicja & Wodarski, Krzysztof & Fidalgo Valverde, Gregorio, 2019. "Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory," Resources Policy, Elsevier, vol. 61(C), pages 283-292.
- Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
- repec:bla:rdevec:v:14:y:2010:i:s1:p:499-519 is not listed on IDEAS
- Fan, Ying & Liang, Qiang & Wei, Yi-Ming, 2008. "A generalized pattern matching approach for multi-step prediction of crude oil price," Energy Economics, Elsevier, vol. 30(3), pages 889-904, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
- Guedes, José & Santos, Pedro, 2016. "Valuing an offshore oil exploration and production project through real options analysis," Energy Economics, Elsevier, vol. 60(C), pages 377-386.
- Zaklan, Aleksandar & Abrell, Jan & Neumann, Anne, 2016. "Stationarity changes in long-run energy commodity prices," Energy Economics, Elsevier, vol. 59(C), pages 96-103.
- Xie Haibin & Zhou Mo & Hu Yi & Yu Mei, 2014. "Forecasting the Crude Oil Price with Extreme Values," Journal of Systems Science and Information, De Gruyter, vol. 2(3), pages 193-205, June.
- Carlos de Lamare Bastian-Pinto & Alexandre Paula Silva Ramos & Luiz de Magalhães Ozorio & Luiz Eduardo Teixeira Brandão, 2015. "Uncertainty and Flexibility in the Brazilian Beef Livestock Sector: the Value of the Confinement Option," Brazilian Business Review, Fucape Business School, vol. 12(6), pages 100-120, November.
- Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
- Mo, Jianlei & Schleich, Joachim & Fan, Ying, 2018.
"Getting ready for future carbon abatement under uncertainty – Key factors driving investment with policy implications,"
Energy Economics, Elsevier, vol. 70(C), pages 453-464.
- Mo, Jianlei & Schleich, Joachim & Fan, Ying, 2018. "Getting ready for future carbon abatement under uncertainty – key factors driving investment with policy implications," LSE Research Online Documents on Economics 87193, London School of Economics and Political Science, LSE Library.
- Miranda, Oscar & Brandão, Luiz E. & Lazo Lazo, Juan, 2017. "A dynamic model for valuing flexible mining exploration projects under uncertainty," Resources Policy, Elsevier, vol. 52(C), pages 393-404.
- Bastian-Pinto, Carlos & Brando, Luiz & Hahn, Warren J., 2009. "Flexibility as a source of value in the production of alternative fuels: The ethanol case," Energy Economics, Elsevier, vol. 31(3), pages 411-422, May.
- Laura Böhm & Sebastian Kolb & Thomas Plankenbühler & Jonas Miederer & Simon Markthaler & Jürgen Karl, 2023. "Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks," Energies, MDPI, vol. 16(18), pages 1-25, September.
- Jorge Chebeir & Aryan Geraili & Jose Romagnoli, 2017. "Development of Shale Gas Supply Chain Network under Market Uncertainties," Energies, MDPI, vol. 10(2), pages 1-31, February.
- Alagidede, Paul & Lange, Ian, 2009. "Variability in coal prices: evidence from the U.S," Stirling Economics Discussion Papers 2009-01, University of Stirling, Division of Economics.
- Hu, Qiwei & Zhang, Anming, 2015. "Real option analysis of aircraft acquisition: A case study," Journal of Air Transport Management, Elsevier, vol. 46(C), pages 19-29.
- Shafiee, Shahriar & Topal, Erkan, 2010. "A long-term view of worldwide fossil fuel prices," Applied Energy, Elsevier, vol. 87(3), pages 988-1000, March.
- Wu, Siping & Xia, Guilin & Liu, Lang, 2023. "A novel decomposition integration model for power coal price forecasting," Resources Policy, Elsevier, vol. 80(C).
- Alejandro Mosiño & Alejandro Tatsuo Moreno-Okuno, 2018. "On modeling fossil fuel prices: geometric Brownian motion vs. variance-gamma process," Economics Bulletin, AccessEcon, vol. 38(1), pages 509-519.
- Atul Chandra & Peter R. Hartley & Gopalan Nair, 2022. "Multiple Volatility Real Options Approach to Investment Decisions Under Uncertainty," Decision Analysis, INFORMS, vol. 19(2), pages 79-98, June.
- Dias, José G. & Ramos, Sofia B., 2014. "Energy price dynamics in the U.S. market. Insights from a heterogeneous multi-regime framework," Energy, Elsevier, vol. 68(C), pages 327-336.
- Miguel A. Jaramillo-Morán & Daniel Fernández-Martínez & Agustín García-García & Diego Carmona-Fernández, 2021. "Improving Artificial Intelligence Forecasting Models Performance with Data Preprocessing: European Union Allowance Prices Case Study," Energies, MDPI, vol. 14(23), pages 1-23, November.
- Himpler, Sebastian & Madlener, Reinhard, 2011. "Repowering of Wind Turbines: Economics and Optimal Timing," FCN Working Papers 19/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
More about this item
Keywords
Coal price; Approximation; BMMR; RBF neural network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:36:y:2023:i:2:d:10.1007_s13563-021-00286-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.