Improving Artificial Intelligence Forecasting Models Performance with Data Preprocessing: European Union Allowance Prices Case Study
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Melina Dritsaki & Chaido Dritsaki, 2020. "Forecasting European Union CO2 Emissions Using Autoregressive Integrated Moving Average-autoregressive Conditional Heteroscedasticity Models," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 411-423.
- Wang, Yuanyuan & Wang, Jianzhou & Zhao, Ge & Dong, Yao, 2012. "Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: A case study of China," Energy Policy, Elsevier, vol. 48(C), pages 284-294.
- Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
- Benz, Eva & Trück, Stefan, 2009. "Modeling the price dynamics of CO2 emission allowances," Energy Economics, Elsevier, vol. 31(1), pages 4-15, January.
- Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013.
"Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals,"
Energy Economics, Elsevier, vol. 40(C), pages 222-232.
- Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," ZEW Discussion Papers 13-001 [rev.], ZEW - Leibniz Centre for European Economic Research.
- Lutz, Benjamin Johannes & Pigorsch, Uta & Rotfuß, Waldemar, 2013. "Nonlinearity in cap-and-trade systems: The EUA price and its fundamentals," ZEW Discussion Papers 13-001, ZEW - Leibniz Centre for European Economic Research.
- Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
- Hedayati , Amin & Hedayati , Moein & Esfandyari, Morteza, 2016. "Stock market index prediction using artificial neural network," Journal of Economics, Finance and Administrative Science, Universidad ESAN, vol. 21(41), pages 89-93.
- Alexandre Lucas & Konstantinos Pegios & Evangelos Kotsakis & Dan Clarke, 2020. "Price Forecasting for the Balancing Energy Market Using Machine-Learning Regression," Energies, MDPI, vol. 13(20), pages 1-16, October.
- Guoqiang Sun & Tong Chen & Zhinong Wei & Yonghui Sun & Haixiang Zang & Sheng Chen, 2016. "A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks," Energies, MDPI, vol. 9(1), pages 1-16, January.
- Conrad, Christian & Rittler, Daniel & Rotfuß, Waldemar, 2012.
"Modeling and explaining the dynamics of European Union Allowance prices at high-frequency,"
Energy Economics, Elsevier, vol. 34(1), pages 316-326.
- Conrad, Christian & Rittler, Daniel & Rotfuß, Waldemar, 2010. "Modeling and Explaining the Dynamics of European Union Allowance Prices at High-Frequency," Working Papers 0497, University of Heidelberg, Department of Economics.
- Conrad, Christian & Rittler, Daniel & Rotfuß, Waldemar, 2010. "Modeling and explaining the dynamics of European Union allowance prices at high-frequency," ZEW Discussion Papers 10-038, ZEW - Leibniz Centre for European Economic Research.
- Liang, Yi & Niu, Dongxiao & Hong, Wei-Chiang, 2019. "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, Elsevier, vol. 166(C), pages 653-663.
- Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
- Fuss, Sabine & Szolgayová, Jana, 2010. "Fuel price and technological uncertainty in a real options model for electricity planning," Applied Energy, Elsevier, vol. 87(9), pages 2938-2944, September.
- Gwiman Bak & Youngchul Bae, 2020. "Predicting the Amount of Electric Power Transaction Using Deep Learning Methods," Energies, MDPI, vol. 13(24), pages 1-30, December.
- Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
- Qi, Min, 1999. "Nonlinear Predictability of Stock Returns Using Financial and Economic Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 419-429, October.
- Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
- Yu Jin & Honggang Guo & Jianzhou Wang & Aiyi Song, 2020. "A Hybrid System Based on LSTM for Short-Term Power Load Forecasting," Energies, MDPI, vol. 13(23), pages 1-32, November.
- Emma Viviani & Luca Di Persio & Matthias Ehrhardt, 2021. "Energy Markets Forecasting. From Inferential Statistics to Machine Learning: The German Case," Energies, MDPI, vol. 14(2), pages 1-33, January.
- Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
- Fuss, Sabine & Johansson, Daniel J.A. & Szolgayova, Jana & Obersteiner, Michael, 2009. "Impact of climate policy uncertainty on the adoption of electricity generating technologies," Energy Policy, Elsevier, vol. 37(2), pages 733-743, February.
- Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
- Tomasz Ciechulski & Stanisław Osowski, 2021. "High Precision LSTM Model for Short-Time Load Forecasting in Power Systems," Energies, MDPI, vol. 14(11), pages 1-15, May.
- Zhu, Bangzhu & Han, Dong & Wang, Ping & Wu, Zhanchi & Zhang, Tao & Wei, Yi-Ming, 2017. "Forecasting carbon price using empirical mode decomposition and evolutionary least squares support vector regression," Applied Energy, Elsevier, vol. 191(C), pages 521-530.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Peng Ye & Yong Li & Abu Bakkar Siddik, 2023. "Forecasting the Return of Carbon Price in the Chinese Market Based on an Improved Stacking Ensemble Algorithm," Energies, MDPI, vol. 16(11), pages 1-39, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
- Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
- Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
- Jianguo Zhou & Qiqi Wang, 2021. "Forecasting Carbon Price with Secondary Decomposition Algorithm and Optimized Extreme Learning Machine," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
- Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
- Fang, Sheng & Lu, Xinsheng & Li, Jianfeng & Qu, Ling, 2018. "Multifractal detrended cross-correlation analysis of carbon emission allowance and stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 551-566.
- Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
- Zhu, Bangzhu & Yuan, Lili & Ye, Shunxin, 2019. "Examining the multi-timescales of European carbon market with grey relational analysis and empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 392-399.
- Dahlen, Niklas & Fehrenkötter, Rieke & Schreiter, Maximilian, 2024. "The new bond on the block — Designing a carbon-linked bond for sustainable investment projects," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 316-325.
- Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.
- Jarmila Zimmermannová, 2015. "Pilot Analysis of the Behaviour of Companies Within the 3rd Trading Period of the EU ETS in the Czech Republic," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(6), pages 2213-2220.
- Su, Chi Wei & Wei, Shenkai & Wang, Yan & Tao, Ran, 2024. "How does climate policy uncertainty affect the carbon market?," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
- repec:hum:wpaper:sfb649dp2014-050 is not listed on IDEAS
- Hintermann, Beat & Peterson, Sonja & Rickels, Wilfried, 2014. "Price and market behavior in Phase II of the EU ETS," Kiel Working Papers 1962, Kiel Institute for the World Economy (IfW Kiel).
- Federica Cucchiella & Idiano D Adamo & Massimo Gastaldi, 2015. "Profitability Analysis for Biomethane: A Strategic Role in the Italian Transport Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 440-449.
- Song, Yazhi & Liu, Tiansen & Liang, Dapeng & Li, Yin & Song, Xiaoqiu, 2019. "A Fuzzy Stochastic Model for Carbon Price Prediction Under the Effect of Demand-related Policy in China's Carbon Market," Ecological Economics, Elsevier, vol. 157(C), pages 253-265.
- Liu, Shuihan & Xie, Gang & Wang, Zhengzhong & Wang, Shouyang, 2024. "A secondary decomposition-ensemble framework for interval carbon price forecasting," Applied Energy, Elsevier, vol. 359(C).
- Gavard, Claire & Kirat, Djamel, 2018.
"Flexibility in the market for international carbon credits and price dynamics difference with European allowances,"
Energy Economics, Elsevier, vol. 76(C), pages 504-518.
- Claire Gavard & Djamel Kirat, 2015. "Flexibility in the Market for International Carbon Credits and Price. Dynamics Difference with European Allowances," Working Papers 2015.03, Fondazione Eni Enrico Mattei.
- Gavard, Claire & Kirat, Djamel, 2017. "Flexibility in the market for international carbon credits and price dynamics difference with European allowances," ZEW Discussion Papers 17-054, ZEW - Leibniz Centre for European Economic Research.
- Huang, Wenyang & Wang, Huiwen & Qin, Haotong & Wei, Yigang & Chevallier, Julien, 2022. "Convolutional neural network forecasting of European Union allowances futures using a novel unconstrained transformation method," Energy Economics, Elsevier, vol. 110(C).
- Petr Cermak & Jarmila Zimmermannova & Jan Lavrincik & Miroslav Pokorny & Jiri Martinu, 2015. "The Broker Simulation Model in the Emission Allowances Trading Area," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 80-95.
- Yan, Kai & Zhang, Wei & Shen, Dehua, 2020. "Stylized facts of the carbon emission market in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
More about this item
Keywords
European Union allowances; CO 2 price prediction; emission allowances; neural networks; forecasting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7845-:d:685593. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.