Short-Term Natural Gas and Carbon Price Forecasting Using Artificial Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Egging, Ruud, 2013. "Benders Decomposition for multi-stage stochastic mixed complementarity problems – Applied to a global natural gas market model," European Journal of Operational Research, Elsevier, vol. 226(2), pages 341-353.
- Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
- Rubin, Ofir D. & Babcock, Bruce A., 2013.
"The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets,"
Energy, Elsevier, vol. 59(C), pages 676-688.
- Rubin, Ofir & Babcock, Bruce A., 2013. "The Impact of Expansion of Wind Power Capacity and Pricing Methods on the Efficiency of Deregulated Electricity Markets," Staff General Research Papers Archive 37410, Iowa State University, Department of Economics.
- Jacob Biamonte & Peter Wittek & Nicola Pancotti & Patrick Rebentrost & Nathan Wiebe & Seth Lloyd, 2017. "Quantum machine learning," Nature, Nature, vol. 549(7671), pages 195-202, September.
- Xiaoxuan Pan & Zhide Lu & Weiting Wang & Ziyue Hua & Yifang Xu & Weikang Li & Weizhou Cai & Xuegang Li & Haiyan Wang & Yi-Pu Song & Chang-Ling Zou & Dong-Ling Deng & Luyan Sun, 2023. "Deep quantum neural networks on a superconducting processor," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
- Ketterer, Janina C., 2014.
"The impact of wind power generation on the electricity price in Germany,"
Energy Economics, Elsevier, vol. 44(C), pages 270-280.
- Janina Ketterer, 2012. "The Impact of Wind Power Generation on the Electricity Price in Germany," ifo Working Paper Series 143, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Nick, Sebastian & Thoenes, Stefan, 2014.
"What drives natural gas prices? — A structural VAR approach,"
Energy Economics, Elsevier, vol. 45(C), pages 517-527.
- Nick, Sebastian & Thoenes, Stefan, 2013. "What Drives Natural Gas Prices? - A Structural VAR Approach," EWI Working Papers 2013-2, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
- Kristiansen, Tarjei, 2012. "Forecasting Nord Pool day-ahead prices with an autoregressive model," Energy Policy, Elsevier, vol. 49(C), pages 328-332.
- Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha & Wenying Wen, 2019. "Data Driven Natural Gas Spot Price Prediction Models Using Machine Learning Methods," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Kanamura, Takashi & Ohashi, Kazuhiko, 2007. "A structural model for electricity prices with spikes: Measurement of spike risk and optimal policies for hydropower plant operation," Energy Economics, Elsevier, vol. 29(5), pages 1010-1032, September.
- Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
- Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
- Maroeska G. Boots, Fieke A.M. Rijkers and Benjamin F. Hobbs, 2004. "Trading in the Downstream European Gas Market: A Successive Oligopoly Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 73-102.
- Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Yangjun Wu & Xiansong Xu & Dario Poletti & Yi Fan & Chu Guo & Honghui Shang, 2023. "A Real Neural Network State for Quantum Chemistry," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fadhila Lachekhab & Messouada Benzaoui & Sid Ahmed Tadjer & Abdelkrim Bensmaine & Hichem Hamma, 2024. "LSTM-Autoencoder Deep Learning Model for Anomaly Detection in Electric Motor," Energies, MDPI, vol. 17(10), pages 1-18, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
- Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020.
"Comparing the forecasting performances of linear models for electricity prices with high RES penetration,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Working Papers No 2/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2018. "Comparing the Forecasting Performances of Linear Models for Electricity Prices with High RES Penetration," Papers 1801.01093, arXiv.org, revised Nov 2019.
- Rafal Weron & Florian Ziel, 2018.
"Electricity price forecasting,"
HSC Research Reports
HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Katarzyna Maciejowska & Rafal Weron, 2019. "Electricity price forecasting," HSC Research Reports HSC/19/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
- Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
- Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2020.
"Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 466-479.
- Grzegorz Marcjasz & Bartosz Uniejewski & Rafal Weron, 2018. "Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?," HSC Research Reports HSC/18/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.
- Marchetti, Isabella & Rego, Erik Eduardo, 2022. "The impact of hourly pricing for renewable generation projects in Brazil," Renewable Energy, Elsevier, vol. 189(C), pages 601-617.
- Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023.
"Forecasting electricity prices with expert, linear, and nonlinear models,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
- Anna Gloria Billé & Angelica Gianfreda & Filippo Del Grosso & Francesco Ravazzolo, 2021. "Forecasting Electricity Prices with Expert, Linear and Non-Linear Models," Working Paper series 21-20, Rimini Centre for Economic Analysis.
- Egging, Ruud & Pichler, Alois & Kalvø, Øyvind Iversen & Walle–Hansen, Thomas Meyer, 2017. "Risk aversion in imperfect natural gas markets," European Journal of Operational Research, Elsevier, vol. 259(1), pages 367-383.
- Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
- Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
- Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
- Tomasz Serafin & Bartosz Uniejewski & Rafał Weron, 2019.
"Averaging Predictive Distributions Across Calibration Windows for Day-Ahead Electricity Price Forecasting,"
Energies, MDPI, vol. 12(13), pages 1-12, July.
- Tomasz Serafin & Bartosz Uniejewski & Rafal Weron, 2019. "Averaging predictive distributions across calibration windows for day-ahead electricity price forecasting," WORking papers in Management Science (WORMS) WORMS/19/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology, revised 06 Jul 2019.
- Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
- Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
- Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
- Yadong Pei & Chiou-Jye Huang & Yamin Shen & Mingyue Wang, 2023. "A Novel Model for Spot Price Forecast of Natural Gas Based on Temporal Convolutional Network," Energies, MDPI, vol. 16(5), pages 1-15, February.
More about this item
Keywords
neural network; natural gas price; carbon price; multi-layer perceptron; price prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6643-:d:1240996. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.