IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipcs0360544222027062.html
   My bibliography  Save this article

An ensemble dynamic self-learning model for multiscale carbon price forecasting

Author

Listed:
  • Zhang, Wen
  • Wu, Zhibin
  • Zeng, Xiaojun
  • Zhu, Changhui

Abstract

Precise carbon price forecasting can provide decision support for policy-makers and investors. However, due to the high non-stationarity and nonlinearity of carbon price series, it is difficult to get accurate forecasting results under volatile situations. To accommodate different scenarios, this paper proposes a dynamic self-learning integrating forecasting model to forecast the carbon price by considering external impact factors. The multi-dimensional time series is initially decomposed into different intrinsic mode functions simultaneously by the noise-assisted multivariate empirical mode decomposition method. After reconstructing the decomposed series into high-frequency, low-frequency, and trend modules, the extreme learning machine optimized by the cosine-based whale optimization algorithm is proposed to predict the carbon price. The dynamic relationships between the carbon price and impact factors are simulated by the sliding window structure, which improves the adaptability of the proposed model. The high prediction accuracy under different situations including extreme scenarios demonstrates the stability of the proposed model. A self-learning algorithm, which can automatically learn the evolving model structure and update model parameters, is designed to alleviate the underfitting/overfitting problem. The comparison results with existing models indicate the superiority of the proposed model.

Suggested Citation

  • Zhang, Wen & Wu, Zhibin & Zeng, Xiaojun & Zhu, Changhui, 2023. "An ensemble dynamic self-learning model for multiscale carbon price forecasting," Energy, Elsevier, vol. 263(PC).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027062
    DOI: 10.1016/j.energy.2022.125820
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222027062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125820?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yue-Jun & Wei, Yi-Ming, 2010. "An overview of current research on EU ETS: Evidence from its operating mechanism and economic effect," Applied Energy, Elsevier, vol. 87(6), pages 1804-1814, June.
    2. Madhu Khanna, 2021. "COVID‐19: A Cloud with a Silver Lining for Renewable Energy?," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(1), pages 73-85, March.
    3. Osorio, Sebastian & Tietjen, Oliver & Pahle, Michael & Pietzcker, Robert C. & Edenhofer, Ottmar, 2021. "Reviewing the Market Stability Reserve in light of more ambitious EU ETS emission targets," Energy Policy, Elsevier, vol. 158(C).
    4. Zhu, Bangzhu & Ye, Shunxin & Han, Dong & Wang, Ping & He, Kaijian & Wei, Yi-Ming & Xie, Rui, 2019. "A multiscale analysis for carbon price drivers," Energy Economics, Elsevier, vol. 78(C), pages 202-216.
    5. Han, Meng & Ding, Lili & Zhao, Xin & Kang, Wanglin, 2019. "Forecasting carbon prices in the Shenzhen market, China: The role of mixed-frequency factors," Energy, Elsevier, vol. 171(C), pages 69-76.
    6. He, Huizi & Sun, Mei & Li, Xiuming & Mensah, Isaac Adjei, 2022. "A novel crude oil price trend prediction method: Machine learning classification algorithm based on multi-modal data features," Energy, Elsevier, vol. 244(PA).
    7. Zhou, Kaile & Li, Yiwen, 2019. "Influencing factors and fluctuation characteristics of China’s carbon emission trading price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 459-474.
    8. Hamdi-Cherif, Meriem & Malliet, Paul & Reynès, Frédéric & Landa, Gissela & Saussay, Aurélien, 2020. "Assessing short-term and long-term economic and environmental effects of the COVID crisis in France," Conference papers 330205, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Llewelyn Hughes & David M. Konisky & Sandra Potter, 2020. "Extreme weather and climate opinion: evidence from Australia," Climatic Change, Springer, vol. 163(2), pages 723-743, November.
    10. Xu, Hua & Wang, Minggang & Jiang, Shumin & Yang, Weiguo, 2020. "Carbon price forecasting with complex network and extreme learning machine," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    11. Dai, Xingyu & Xiao, Ling & Wang, Qunwei & Dhesi, Gurjeet, 2021. "Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS," Energy Policy, Elsevier, vol. 156(C).
    12. Lei Xie & Hongshuai Han, 2020. "Capacity Sharing and Capacity Investment of Environment-Friendly Manufacturing: Strategy Selection and Performance Analysis," IJERPH, MDPI, vol. 17(16), pages 1-20, August.
    13. Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
    14. Li, Guohui & Ning, Zhiyuan & Yang, Hong & Gao, Lipeng, 2022. "A new carbon price prediction model," Energy, Elsevier, vol. 239(PD).
    15. Gao, Feng & Shao, Xueyan, 2022. "A novel interval decomposition ensemble model for interval carbon price forecasting," Energy, Elsevier, vol. 243(C).
    16. Zhu, Bangzhu & Ye, Shunxin & Wang, Ping & He, Kaijian & Zhang, Tao & Wei, Yi-Ming, 2018. "A novel multiscale nonlinear ensemble leaning paradigm for carbon price forecasting," Energy Economics, Elsevier, vol. 70(C), pages 143-157.
    17. Paul Malliet & Frédéric Reynès & Gissela Landa & Meriem Hamdi-Cherif & Aurélien Saussay, 2020. "Assessing Short-Term and Long-Term Economic and Environmental Effects of the COVID-19 Crisis in France," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 867-883, August.
    18. Zhou, Feite & Huang, Zhehao & Zhang, Changhong, 2022. "Carbon price forecasting based on CEEMDAN and LSTM," Applied Energy, Elsevier, vol. 311(C).
    19. Sun, Jingyun & Zhao, Panpan & Sun, Shaolong, 2022. "A new secondary decomposition-reconstruction-ensemble approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 77(C).
    20. repec:hal:spmain:info:hdl:2441/6neh4df2kq9orrjiscv6839f6n is not listed on IDEAS
    21. Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
    22. Batten, Jonathan A. & Maddox, Grace E. & Young, Martin R., 2021. "Does weather, or energy prices, affect carbon prices?," Energy Economics, Elsevier, vol. 96(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Wenyang & Zhao, Jianyu & Wang, Xiaokang, 2024. "Model-driven multimodal LSTM-CNN for unbiased structural forecasting of European Union allowances open-high-low-close price," Energy Economics, Elsevier, vol. 132(C).
    2. Wang, Longze & Zhang, Yan & Li, Zhehan & Huang, Qiyu & Xiao, Yuxin & Yi, Xinxing & Ma, Yiyi & Li, Meicheng, 2023. "P2P trading mode for real-time coupled electricity and carbon markets based on a new indicator green energy," Energy, Elsevier, vol. 285(C).
    3. Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
    4. Xie, Gang & Jiang, Fuxin & Zhang, Chengyuan, 2023. "A secondary decomposition-ensemble methodology for forecasting natural gas prices using multisource data," Resources Policy, Elsevier, vol. 85(PA).
    5. Beibei Hu & Yunhe Cheng, 2023. "Prediction of Regional Carbon Price in China Based on Secondary Decomposition and Nonlinear Error Correction," Energies, MDPI, vol. 16(11), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jingmiao & Liu, Dehong, 2023. "Carbon price forecasting based on secondary decomposition and feature screening," Energy, Elsevier, vol. 278(PA).
    2. Li, Dan & Li, Yijun & Wang, Chaoqun & Chen, Min & Wu, Qi, 2023. "Forecasting carbon prices based on real-time decomposition and causal temporal convolutional networks," Applied Energy, Elsevier, vol. 331(C).
    3. Huang, Yumeng & Dai, Xingyu & Wang, Qunwei & Zhou, Dequn, 2021. "A hybrid model for carbon price forecastingusing GARCH and long short-term memory network," Applied Energy, Elsevier, vol. 285(C).
    4. Jianguo Zhou & Dongfeng Chen, 2021. "Carbon Price Forecasting Based on Improved CEEMDAN and Extreme Learning Machine Optimized by Sparrow Search Algorithm," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    5. Ding, Lili & Zhang, Rui & Zhao, Xin, 2024. "Forecasting carbon price in China unified carbon market using a novel hybrid method with three-stage algorithm and long short-term memory neural networks," Energy, Elsevier, vol. 288(C).
    6. Qi, Shaozhou & Cheng, Shihan & Tan, Xiujie & Feng, Shenghao & Zhou, Qi, 2022. "Predicting China's carbon price based on a multi-scale integrated model," Applied Energy, Elsevier, vol. 324(C).
    7. Liao, Haolan & Wu, Di & Wang, Yuhan & Lyu, Zeyu & Sun, Hongmei & Nie, Yongyou & He, He, 2022. "Impacts of carbon trading mechanism on closed-loop supply chain: A case study of stringer pallet remanufacturing," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    8. Chen, Linfei & Zhao, Xuefeng, 2024. "A multiscale and multivariable differentiated learning for carbon price forecasting," Energy Economics, Elsevier, vol. 131(C).
    9. Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
    10. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    11. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2022. "Forecasting European carbon returns using dimension reduction techniques: Commodity versus financial fundamentals," International Journal of Forecasting, Elsevier, vol. 38(3), pages 944-969.
    12. Beibei Hu & Yunhe Cheng, 2023. "Prediction of Regional Carbon Price in China Based on Secondary Decomposition and Nonlinear Error Correction," Energies, MDPI, vol. 16(11), pages 1-22, May.
    13. Qin, Chaoyong & Qin, Dongling & Jiang, Qiuxian & Zhu, Bangzhu, 2024. "Forecasting carbon price with attention mechanism and bidirectional long short-term memory network," Energy, Elsevier, vol. 299(C).
    14. Lei, Heng & Xue, Minggao & Liu, Huiling, 2022. "Probability distribution forecasting of carbon allowance prices: A hybrid model considering multiple influencing factors," Energy Economics, Elsevier, vol. 113(C).
    15. Hao, Xinyu & Sun, Wen & Zhang, Xiaoling, 2023. "How does a scarcer allowance remake the carbon market? An evolutionary game analysis from the perspective of stakeholders," Energy, Elsevier, vol. 280(C).
    16. Xiaohua Song & Wen Zhang & Zeqi Ge & Siqi Huang & Yamin Huang & Sijia Xiong, 2022. "A Study of the Influencing Factors on the Carbon Emission Trading Price in China Based on the Improved Gray Relational Analysis Model," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    17. Wang, Jujie & Zhuang, Zhenzhen & Gao, Dongming, 2023. "An enhanced hybrid model based on multiple influencing factors and divide-conquer strategy for carbon price prediction," Omega, Elsevier, vol. 120(C).
    18. Wang, Minggang & Zhu, Mengrui & Tian, Lixin, 2022. "A novel framework for carbon price forecasting with uncertainties," Energy Economics, Elsevier, vol. 112(C).
    19. Zhu, Mengrui & Xu, Hua & Wang, Minggang & Tian, Lixin, 2024. "Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    20. Wen Zhang & Zhibin Wu, 2022. "Optimal hybrid framework for carbon price forecasting using time series analysis and least squares support vector machine," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 615-632, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pc:s0360544222027062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.