My bibliography
Save this item
Complete subset regressions
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kourentzes, Nikolaos & Trapero, Juan R. & Barrow, Devon K., 2020. "Optimising forecasting models for inventory planning," International Journal of Production Economics, Elsevier, vol. 225(C).
- Exterkate, Peter & Groenen, Patrick J.F. & Heij, Christiaan & van Dijk, Dick, 2016.
"Nonlinear forecasting with many predictors using kernel ridge regression,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 736-753.
- Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2011. "Nonlinear Forecasting with Many Predictors using Kernel Ridge Regression," Tinbergen Institute Discussion Papers 11-007/4, Tinbergen Institute.
- Peter Exterkate & Patrick J.F. Groenen & Christiaan Heij & Dick van Dijk, 2013. "Nonlinear Forecasting With Many Predictors Using Kernel Ridge Regression," CREATES Research Papers 2013-16, Department of Economics and Business Economics, Aarhus University.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Moritz Meister & Annekatrin Niebuhr & Jan Cornelius Peters & Johannes Stiller, 2023. "Local attributes and migration balance – evidence for different age and skill groups from a machine learning approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(4), pages 794-825, May.
- Scholz, Michael & Nielsen, Jens Perch & Sperlich, Stefan, 2015. "Nonparametric prediction of stock returns based on yearly data: The long-term view," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 143-155.
- Chen, Yi-Ting & Liu, Chu-An, 2023.
"Model averaging for asymptotically optimal combined forecasts,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
- Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019.
"Bayesian compressed vector autoregressions,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 2016_09, Business School - Economics, University of Glasgow.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103, Brandeis University, Department of Economics and International Business School.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2017. "Bayesian Compressed Vector Autoregressions," Working Paper series 17-32, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis & Davide Pettenuzzo, 2016. "Bayesian Compressed Vector Autoregressions," Working Papers 103R, Brandeis University, Department of Economics and International Business School, revised Apr 2016.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021.
"Can Machine Learning Help to Select Portfolios of Mutual Funds?,"
Working Papers
1245, Barcelona School of Economics.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can machine learning help to select portfolios of mutual funds?," Economics Working Papers 1772, Department of Economics and Business, Universitat Pompeu Fabra.
- Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021.
"Macroeconomic data transformations matter,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "Macroeconomic Data Transformations Matter," Working Papers 20-17, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Mar 2021.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2020. "Macroeconomic Data Transformations Matter," CIRANO Working Papers 2020s-42, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "Macroeconomic Data Transformations Matter," Papers 2008.01714, arXiv.org, revised Mar 2021.
- Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019.
"Bond Return Predictability: Economic Value and Links to the Macroeconomy,"
Management Science, INFORMS, vol. 65(2), pages 508-540, February.
- Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75R, Brandeis University, Department of Economics and International Business School, revised Jul 2016.
- Davide Pettenuzzo & Antonio Gargano & Allan Timmermann, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Working Papers 75, Brandeis University, Department of Economics and International Business School.
- Timmermann, Allan & Pettenuzzo, Davide & Gargano, Antonio, 2014. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," CEPR Discussion Papers 10104, C.E.P.R. Discussion Papers.
- Faias, José Afonso, 2023. "Predicting the equity risk premium using the smooth cross-sectional tail risk: The importance of correlation," Journal of Financial Markets, Elsevier, vol. 63(C).
- Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
- Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
- Joshua C. C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2020.
"Composite likelihood methods for large Bayesian VARs with stochastic volatility,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 692-711, September.
- Joshua C.C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2018. "Composite Likelihood Methods for Large Bayesian VARs with Stochastic Volatility," Working Paper Series 44, Economics Discipline Group, UTS Business School, University of Technology, Sydney.
- Joshua C.C. Chan & Eric Eisenstat & Chenghan Hou & Gary Koop, 2018. "Composite likelihood methods for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2018-26, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Aslanidis, Nektarios & Christiansen, Charlotte & Cipollini, Andrea, 2019.
"Predicting bond betas using macro-finance variables,"
Finance Research Letters, Elsevier, vol. 29(C), pages 193-199.
- Nektarios Aslanidis & Charlotte Christiansen & Andrea Cipollini, 2017. "Predicting Bond Betas using Macro-Finance Variables," CREATES Research Papers 2017-01, Department of Economics and Business Economics, Aarhus University.
- Aslanidis, Nektarios, & Christiansen, Charlotte & Cipollini, Andrea & Bons -- Models matemàtics, 2018. "Predicting Bond Betas using Macro-Finance Variables," Working Papers 2072/306546, Universitat Rovira i Virgili, Department of Economics.
- Cheng, Tingting & Jiang, Shan & Zhao, Albert Bo & Jia, Zhimin, 2023. "Complete subset averaging methods in corporate bond return prediction," Finance Research Letters, Elsevier, vol. 54(C).
- Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023.
"Commodity futures return predictability and intertemporal asset pricing,"
Journal of Commodity Markets, Elsevier, vol. 31(C).
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2020. "Commodity Futures Return Predictability and Intertemporal Asset Pricing," Working Papers 202011, Geary Institute, University College Dublin.
- John Cotter & Emmanuel Eyiah-Donkor & Valerio Potì, 2023. "Commodity futures return predictability and intertemporal asset pricing," Post-Print hal-04192933, HAL.
- Kurov, Alexander & Sancetta, Alessio & Strasser, Georg & Wolfe, Marketa Halova, 2019.
"Price Drift Before U.S. Macroeconomic News: Private Information about Public Announcements?,"
Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(1), pages 449-479, February.
- Alexander Kurov & Alessio Sancetta & Georg H. Strasser & Marketa Halova Wolfe, 2015. "Price Drift before U.S. Macroeconomic News: Private Information about Public Announcements?," Boston College Working Papers in Economics 881, Boston College Department of Economics, revised 29 Jul 2015.
- Strasser, Georg & Kurov, Alexander & Sancetta, Alessio & Wolfe, Marketa Halova, 2016. "Price drift before U.S. macroeconomic news: private information about public announcements?," Working Paper Series 1901, European Central Bank.
- Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.
- Antoine Mandel & Amir Sani, 2017.
"A Machine Learning Approach to the Forecast Combination Puzzle,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-01317974, HAL.
- Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Koo, Bonsoo & Anderson, Heather M. & Seo, Myung Hwan & Yao, Wenying, 2020. "High-dimensional predictive regression in the presence of cointegration," Journal of Econometrics, Elsevier, vol. 219(2), pages 456-477.
- Donghua Wang & Tianhui Fang, 2022. "Forecasting Crude Oil Prices with a WT-FNN Model," Energies, MDPI, vol. 15(6), pages 1-21, March.
- Scholz, Michael & Sperlich, Stefan & Nielsen, Jens Perch, 2016. "Nonparametric long term prediction of stock returns with generated bond yields," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 82-96.
- Dalibor Stevanovic & Rachidi Kotchoni & Maxime Leroux, 2017.
"Forecasting economic activity in data-rich environment,"
CIRANO Working Papers
2017s-05, CIRANO.
- Maxime Leroux & Rachidi Kotchoni & Dalibor Stevanovic, 2017. "Forecasting economic activity in data-rich environment," Working Papers hal-04141668, HAL.
- Maxime Leroux & Rachidi Kotchoni & Dalibor Stevanovic, 2017. "Forecasting economic activity in data-rich environment," EconomiX Working Papers 2017-5, University of Paris Nanterre, EconomiX.
- Arim Jin & Dahan Lee & Jong-Bae Park & Jae Hyung Roh, 2023. "Day-Ahead Electricity Market Price Forecasting Considering the Components of the Electricity Market Price; Using Demand Decomposition, Fuel Cost, and the Kernel Density Estimation," Energies, MDPI, vol. 16(7), pages 1-19, April.
- Seojeong Lee & Youngki Shin, 2021.
"Complete subset averaging with many instruments,"
The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 290-314.
- Seojeong Lee & Youngki Shin, 2018. "Complete Subset Averaging with Many Instruments," Papers 1811.08083, arXiv.org, revised Aug 2020.
- Boot, Tom & Nibbering, Didier, 2019.
"Forecasting using random subspace methods,"
Journal of Econometrics, Elsevier, vol. 209(2), pages 391-406.
- Tom Boot & Didier Nibbering, 2016. "Forecasting Using Random Subspace Methods," Tinbergen Institute Discussion Papers 16-073/III, Tinbergen Institute, revised 11 Aug 2017.
- Yanhui Chen & Ailing Feng & Shun Chen & Jackson Jinhong Mi, 2024. "Forecasting the containerized freight index with AIS data: A novel information combination method based on gray incidence analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 802-815, April.
- Lyócsa, Štefan & Todorova, Neda & Výrost, Tomáš, 2021. "Predicting risk in energy markets: Low-frequency data still matter," Applied Energy, Elsevier, vol. 282(PA).
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Beckmann, Joscha & Schüssler, Rainer, 2016. "Forecasting exchange rates under parameter and model uncertainty," Journal of International Money and Finance, Elsevier, vol. 60(C), pages 267-288.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2015. "Complete subset regressions with large-dimensional sets of predictors," Journal of Economic Dynamics and Control, Elsevier, vol. 54(C), pages 86-110.
- Lee, Ji Hyung & Shin, Youngki, 2023.
"Complete Subset Averaging For Quantile Regressions,"
Econometric Theory, Cambridge University Press, vol. 39(1), pages 146-188, February.
- Ji Hyung Lee & Youngki Shin, 2020. "Complete Subset Averaging for Quantile Regressions," Papers 2003.03299, arXiv.org, revised Jul 2021.
- Ji Hyung Lee & Youngki Shin, 2020. "Complete Subset Averaging for Quantile Regressions," Department of Economics Working Papers 2020-03, McMaster University.
- Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016.
"Sparse Graphical Vector Autoregression: A Bayesian Approach,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
- Roberto Casarin & Daniel Felix Ahelegbey & Monica Billio, 2014. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Working Papers 2014:29, Department of Economics, University of Venice "Ca' Foscari".
- Philippe Goulet Coulombe, 2020. "To Bag is to Prune," Papers 2008.07063, arXiv.org, revised Sep 2024.
- Magnus, Jan R. & Vasnev, Andrey L., 2015. "Interpretation and use of sensitivity in econometrics, illustrated with forecast combinations," International Journal of Forecasting, Elsevier, vol. 31(3), pages 769-781.
- Daniel Borup & Erik Christian Montes Schütte, 2022.
"In Search of a Job: Forecasting Employment Growth Using Google Trends,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
- Daniel Borup & Erik Christian Montes Schütte, 2019. "In search of a job: Forecasting employment growth using Google Trends," CREATES Research Papers 2019-13, Department of Economics and Business Economics, Aarhus University.
- Daniele Bianchi & Kenichiro McAlinn, 2018. "Large-Scale Dynamic Predictive Regressions," Papers 1803.06738, arXiv.org.
- Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
- Pablo Duarte & Bernd Süssmuth, 2018.
"Implementing an Approximate Dynamic Factor Model to Nowcast GDP Using Sensitivity Analysis,"
Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 127-141, April.
- Duarte, Pablo & Süßmuth, Bernd, 2018. "Implementing an approximate dynamic factor model to nowcast GDP using sensitivity analysis," Working Papers 152, University of Leipzig, Faculty of Economics and Management Science.
- Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
- Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
- Wang, Yudong & Liu, Li & Ma, Feng & Diao, Xundi, 2018. "Momentum of return predictability," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 141-156.
- Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
- Kartikay Gupta & Niladri Chatterjee, 2021. "Stocks Recommendation from Large Datasets Using Important Company and Economic Indicators," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 667-689, December.
- Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2016. "Forecasting macroeconomic variables in data-rich environments," Economics Letters, Elsevier, vol. 138(C), pages 50-52.
- Chrystalleni Aristidou & Kevin Lee & Kalvinder Shields, 2015. "Real-Time Data should be used in Forecasting Output Growth and Recessionary Events in the US," Discussion Papers 2015/13, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
- Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
- Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023.
"Targeting predictors in random forest regression,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N{o}rgaard Muhlbach & Mikkel Slot Nielsen, 2020. "Targeting predictors in random forest regression," Papers 2004.01411, arXiv.org, revised Nov 2020.
- Daniel Borup & Bent Jesper Christensen & Nicolaj N. Mühlbach & Mikkel S. Nielsen, 2020. "Targeting predictors in random forest regression," CREATES Research Papers 2020-03, Department of Economics and Business Economics, Aarhus University.
- Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017.
"Robust Forecast Comparison,"
Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
- Sainan Jin & Valentina Corradi & Norman Swanson, 2015. "Robust Forecast Comparison," Departmental Working Papers 201502, Rutgers University, Department of Economics.
- Chu‐An Liu & Biing‐Shen Kuo, 2016.
"Model averaging in predictive regressions,"
Econometrics Journal, Royal Economic Society, vol. 19(2), pages 203-231, June.
- Liu, Chu-An & Kuo, Biing-Shen, 2014. "Model Averaging in Predictive Regressions," MPRA Paper 54198, University Library of Munich, Germany.
- Risse, Marian & Ohl, Ludwig, 2017. "Using dynamic model averaging in state space representation with dynamic Occam’s window and applications to the stock and gold market," Journal of Empirical Finance, Elsevier, vol. 44(C), pages 158-176.
- Chen, Xingyi & Li, Haiqi & Zhang, Jing, 2023. "Complete subset averaging approach for high-dimensional generalized linear models," Economics Letters, Elsevier, vol. 226(C).
- Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
- Jiun-Hua Su, 2021. "No-Regret Forecasting with Egalitarian Committees," Papers 2109.13801, arXiv.org.
- Buncic, Daniel & Piras, Gion Donat, 2016.
"Heterogeneous agents, the financial crisis and exchange rate predictability,"
Journal of International Money and Finance, Elsevier, vol. 60(C), pages 313-359.
- Buncic, Daniel & Piras, Gion Donat, 2014. "Heterogeneous Agents, the Financial Crisis and Exchange Rate Predictability," Economics Working Paper Series 1436, University of St. Gallen, School of Economics and Political Science, revised Oct 2015.
- Qiu, Yue, 2021. "Complete subset least squares support vector regression," Economics Letters, Elsevier, vol. 200(C).
- Costa, Alexandre Bonnet R. & Ferreira, Pedro Cavalcanti G. & Gaglianone, Wagner P. & Guillén, Osmani Teixeira C. & Issler, João Victor & Lin, Yihao, 2021.
"Machine learning and oil price point and density forecasting,"
Energy Economics, Elsevier, vol. 102(C).
- Alexandre Bonnet R. Costa & Pedro Cavalcanti G. Ferreira & Wagner P. Gaglianone & Osmani Teixeira C. Guillén & João Victor Issler & Yihao Lin, 2021. "Machine Learning and Oil Price Point and Density Forecasting," Working Papers Series 544, Central Bank of Brazil, Research Department.
- Matthias Pelster & Johannes Vilsmeier, 2018. "The determinants of CDS spreads: evidence from the model space," Review of Derivatives Research, Springer, vol. 21(1), pages 63-118, April.
- Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
- Graham Elliott & Allan Timmermann, 2016.
"Forecasting in Economics and Finance,"
Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
- Timmermann, Allan & Elliott, Graham, 2016. "Forecasting in Economics and Finance," CEPR Discussion Papers 11354, C.E.P.R. Discussion Papers.
- Elliott, Graham & Timmermann, Allan G, 2016. "Forecasting in Economics and Finance," University of California at San Diego, Economics Working Paper Series qt6z55v472, Department of Economics, UC San Diego.
- Gargano, Antonio & Timmermann, Allan, 2014. "Forecasting commodity price indexes using macroeconomic and financial predictors," International Journal of Forecasting, Elsevier, vol. 30(3), pages 825-843.
- Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
- Hongwei Zhang & Qiang He & Ben Jacobsen & Fuwei Jiang, 2020. "Forecasting stock returns with model uncertainty and parameter instability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 629-644, August.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019.
"Macroeconomic forecast accuracy in a data‐rich environment,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic Forecast Accuracy in data-rich environment," Post-Print hal-02435757, HAL.
- Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Antoine Mandel & Amir Sani, 2016.
"Learning Time-Varying Forecast Combinations,"
Documents de travail du Centre d'Economie de la Sorbonne
16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Sep 2016.
- Korobilis, Dimitris, 2018.
"Machine Learning Macroeconometrics A Primer,"
Essex Finance Centre Working Papers
22666, University of Essex, Essex Business School.
- Dimitris Korobilis, 2018. "Machine Learning Macroeconometrics: A Primer," Working Paper series 18-30, Rimini Centre for Economic Analysis.
- Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
- Sabaj, Ernil & Kahveci, Mustafa, 2018. "Forecasting tax revenues in an emerging economy: The case of Albania," MPRA Paper 84404, University Library of Munich, Germany.
- Narayan, Seema & Smyth, Russell, 2015.
"The financial econometrics of price discovery and predictability,"
International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
- Seema Narayan & Russell Smyth, 2015. "The Financial Econometrics of Price Discovery and Predictability," Monash Economics Working Papers 06-15, Monash University, Department of Economics.
- Adriano S. Koshiyama & Nikan Firoozye & Philip Treleaven, 2019. "A derivatives trading recommendation system: The mid‐curve calendar spread case," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(2), pages 83-103, April.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Kevin Kotze & Neil Rankin & Rulof P. Burger, 2022. "Big data forecasting of South African inflation," Working Papers 873, Economic Research Southern Africa.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2021. "Forecasting benchmarks of long-term stock returns via machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 221-240, February.
- David A. Mascio & Frank J. Fabozzi & J. Kenton Zumwalt, 2021. "Market timing using combined forecasts and machine learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(1), pages 1-16, January.
- Olivier Fortin‐Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"A large Canadian database for macroeconomic analysis,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(4), pages 1799-1833, November.
- Olivier Fortin-Gagnon & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2018. "A Large Canadian Database for Macroeconomic Analysis," CIRANO Working Papers 2018s-25, CIRANO.
- Olivier Fortin-Gagnon & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "A Large Canadian Database for Macroeconomic Analysis," Working Papers 20-07, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Hounyo, Ulrich & Lahiri, Kajal, 2023.
"Estimating the variance of a combined forecast: Bootstrap-based approach,"
Journal of Econometrics, Elsevier, vol. 232(2), pages 445-468.
- Ulrich Hounyo & Kajal Lahiri, 2021. "Estimating the Variance of a Combined Forecast: Bootstrap-Based Approach," CREATES Research Papers 2021-14, Department of Economics and Business Economics, Aarhus University.
- Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023.
"Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
- Gustavo Silva Araujo & Wagner Piazza Gaglianone, 2022. "Machine Learning Methods for Inflation Forecasting in Brazil: new contenders versus classical models," Working Papers Series 561, Central Bank of Brazil, Research Department.
- Felipe Leal & Carlos Molina & Eduardo Zilberman, 2020. "Proyección de la Inflación en Chile con Métodos de Machine Learning," Working Papers Central Bank of Chile 860, Central Bank of Chile.
- Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
- Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
- Zhifeng Dai & Tingyu Li & Mi Yang, 2022. "Forecasting stock return volatility: The role of shrinkage approaches in a data‐rich environment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 980-996, August.
- DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
- Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
- Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach, Second Version," PIER Working Paper Archive 13-061, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 03 Sep 2013.
- M. Chudý & S. Karmakar & W. B. Wu, 2020. "Long-term prediction intervals of economic time series," Empirical Economics, Springer, vol. 58(1), pages 191-222, January.
- Liu, Chu-An, 2015.
"Distribution theory of the least squares averaging estimator,"
Journal of Econometrics, Elsevier, vol. 186(1), pages 142-159.
- Liu, Chu-An, 2013. "Distribution Theory of the Least Squares Averaging Estimator," MPRA Paper 54201, University Library of Munich, Germany.
- Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
- Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2016. "Can commodity returns forecast Canadian sector stock returns?," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 172-188.
- Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
- Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
- Seojeong Lee & Youngki Shin, 2018. "Optimal Estimation with Complete Subsets of Instruments," Department of Economics Working Papers 2018-15, McMaster University.
- Eraslan, Sercan & Schröder, Maximilian, 2023. "Nowcasting GDP with a pool of factor models and a fast estimation algorithm," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1460-1476.
- Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
- Brownlees, Christian & Mesters, Geert, 2021.
"Detecting granular time series in large panels,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 544-561.
- Christian Brownlees & Geert Mesters, 2017. "Detecting Granular Time Series in Large Panels," Working Papers 991, Barcelona School of Economics.
- Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Anthony Garratt & Ivan Petrella, 2022. "Commodity prices and inflation risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 392-414, March.
- Pelster, Matthias & Vilsmeier, Johannes, 2016. "The determinants of CDS spreads: Evidence from the model space," Discussion Papers 43/2016, Deutsche Bundesbank.
- repec:wrk:wrkemf:23 is not listed on IDEAS
- Adriano Soares Koshiyama & Nick Firoozye & Philip Treleaven, 2018. "A Machine Learning-based Recommendation System for Swaptions Strategies," Papers 1810.02125, arXiv.org.
- Ioannis D. Vrontos & John Galakis & Ekaterini Panopoulou & Spyridon D. Vrontos, 2024. "Forecasting GDP growth: The economic impact of COVID‐19 pandemic," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 1042-1086, July.
- Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Equity Premia using Bayesian Dynamic Model Averaging," CQE Working Papers 2914, Center for Quantitative Economics (CQE), University of Muenster.