Stocks Recommendation from Large Datasets Using Important Company and Economic Indicators
Author
Abstract
Suggested Citation
DOI: 10.1007/s10690-021-09341-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Jiahan & Tsiakas, Ilias, 2017.
"Equity premium prediction: The role of economic and statistical constraints,"
Journal of Financial Markets, Elsevier, vol. 36(C), pages 56-75.
- Jiahan Li & Ilias Tsiakas, 2016. "Equity Premium Prediction: The Role of Economic and Statistical Constraints," Working Paper series 16-25, Rimini Centre for Economic Analysis.
- Jiahan Li & Ilias Tsiakas & Wei Wang, 2015.
"Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?,"
Journal of Financial Econometrics, Oxford University Press, vol. 13(2), pages 293-341.
- Jiahan Li & Ilias Tsiakas & Wei Wang, 2014. "Predicting Exchange Rates Out of Sample: Can Economic Fundamentals Beat the Random Walk?," Working Paper series 05_14, Rimini Centre for Economic Analysis.
- Ivo Welch & Amit Goyal, 2008.
"A Comprehensive Look at The Empirical Performance of Equity Premium Prediction,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
- Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
- Amit Goyal & Ivo Welch & Athanasse Zafirov, 2021. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II," Swiss Finance Institute Research Paper Series 21-85, Swiss Finance Institute.
- Amit Goval & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," NBER Working Papers 10483, National Bureau of Economic Research, Inc.
- Donatien Hainaut & Franck Moraux, 2019.
"A switching self-exciting jump diffusion process for stock prices,"
Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
- Hainaut, Donatien & Moraux, Franck, 2018. "A switching self-exciting jump diffusion process for stock prices," LIDAM Discussion Papers ISBA 2018013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Hainaut, Donatien & Moraux, Franck, 2019. "A switching self-exciting jump diffusion process for stock prices," LIDAM Reprints ISBA 2019017, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Post-Print halshs-01909772, HAL.
- Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Hubert Dichtl & Wolfgang Drobetz & Martin Wambach, 2016. "Testing rebalancing strategies for stock-bond portfolios across different asset allocations," Applied Economics, Taylor & Francis Journals, vol. 48(9), pages 772-788, February.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014.
"Forecasting the Equity Risk Premium: The Role of Technical Indicators,"
Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2010. "Out-of-sample equity premium prediction: economic fundamentals vs. moving-average rules," Working Papers 2010-008, Federal Reserve Bank of St. Louis.
- Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2011. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Working Papers CoFie-02-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Hribar, Rok & Potočnik, Primož & Šilc, Jurij & Papa, Gregor, 2019. "A comparison of models for forecasting the residential natural gas demand of an urban area," Energy, Elsevier, vol. 167(C), pages 511-522.
- Rabinovitch, Ramon, 1989. "Pricing Stock and Bond Options when the Default-Free Rate is Stochastic," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(4), pages 447-457, December.
- Ramaprasad Bhar & Biljana Nikolova, 2009. "Oil Prices and Equity Returns in the BRIC Countries," The World Economy, Wiley Blackwell, vol. 32(7), pages 1036-1054, July.
- Antonios Sangvinatsos, 2017. "A Random Walk Down Wall Street: The Time-Tested Strategy For Successful Investing," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 327-330, March.
- Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Zhang, Yaojie & Wei, Yu & Ma, Feng & Yi, Yongsheng, 2019. "Economic constraints and stock return predictability: A new approach," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 1-9.
- Stefan Giebel & Martin Rainer, 2013. "Neural network calibrated stochastic processes: forecasting financial assets," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 277-293, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Barua, Ronil & Sharma, Anil K., 2023. "Using fear, greed and machine learning for optimizing global portfolios: A Black-Litterman approach," Finance Research Letters, Elsevier, vol. 58(PC).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kartikay Gupta & Niladri Chatterjee, 2019. "Top performing stocks recommendation strategy for portfolio," Papers 1901.11013, arXiv.org, revised Aug 2019.
- Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
- Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
- Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
- Wang, Yudong & Liu, Li & Ma, Feng & Diao, Xundi, 2018. "Momentum of return predictability," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 141-156.
- Zhang, Yaojie & Wei, Yu & Zhang, Yi & Jin, Daxiang, 2019. "Forecasting oil price volatility: Forecast combination versus shrinkage method," Energy Economics, Elsevier, vol. 80(C), pages 423-433.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
- Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
- Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Equity Premia using Bayesian Dynamic Model Averaging," CQE Working Papers 2914, Center for Quantitative Economics (CQE), University of Muenster.
- Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).
- Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Ma, Feng & Wang, Ruoxin & Lu, Xinjie & Wahab, M.I.M., 2021. "A comprehensive look at stock return predictability by oil prices using economic constraint approaches," International Review of Financial Analysis, Elsevier, vol. 78(C).
- Dai, Zhifeng & Zhu, Huan, 2020. "Stock return predictability from a mixed model perspective," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
- Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
- Dai, Zhifeng & Zhu, Huan, 2021. "Indicator selection and stock return predictability," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Dai, Zhifeng & Dong, Xiaodi & Kang, Jie & Hong, Lianying, 2020. "Forecasting stock market returns: New technical indicators and two-step economic constraint method," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
- Dai, Zhifeng & Zhou, Huiting & Kang, Jie & Wen, Fenghua, 2021. "The skewness of oil price returns and equity premium predictability," Energy Economics, Elsevier, vol. 94(C).
- Dai, Zhifeng & Zhu, Huan & Kang, Jie, 2021. "New technical indicators and stock returns predictability," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 127-142.
- Tsiakas, Ilias & Li, Jiahan & Zhang, Haibin, 2020.
"Equity premium prediction and the state of the economy,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 75-95.
- Ilias Tsiakas & Jiahan Li & Haibin Zhang, 2020. "Equity Premium Prediction and the State of the Economy," Working Paper series 20-16, Rimini Centre for Economic Analysis.
More about this item
Keywords
Equity returns; Ranking; Forecasting; Kitchen sink regression;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:28:y:2021:i:4:d:10.1007_s10690-021-09341-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.