IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v43y2024i3p802-815.html
   My bibliography  Save this article

Forecasting the containerized freight index with AIS data: A novel information combination method based on gray incidence analysis

Author

Listed:
  • Yanhui Chen
  • Ailing Feng
  • Shun Chen
  • Jackson Jinhong Mi

Abstract

This paper uses the container shipping capacities of 11 major trade lanes, obtained from automatic identification system (AIS), to construct a common factor based on gray incidence analysis (GIA) in the aim of improving the predictability of containerized freight index. Our results show that the common factor generated by GIA consistently exhibits better out‐of‐sample prediction performances than principal component analysis (PCA) and least absolute shrinkage and selection operator (LASSO), meaning that GIA can extract more useful information for forecasting freight index. Our main findings are first, GIA can evaluate the similarity between the predictors and the predicted value. Unlike popular information combination method PCA, which cannot extract the relevant information from the predictors, GIA can extract the most relevant information of the predictors to the predicted value. Second, different from LASSO, which drops some information, GIA maintains the most information, because the container shipping capacities of different lanes all impact the freight index. Third, AIS data do provide information increments for freight rate forecasting. This research explores a new field application of gray relational analysis in information combination and presents one application of GIA in big data processing. This research shows the usefulness of AIS information in predicting freight index. Additionally, this research enlightens the prediction of freight rate based on big data from AIS.

Suggested Citation

  • Yanhui Chen & Ailing Feng & Shun Chen & Jackson Jinhong Mi, 2024. "Forecasting the containerized freight index with AIS data: A novel information combination method based on gray incidence analysis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 802-815, April.
  • Handle: RePEc:wly:jforec:v:43:y:2024:i:3:p:802-815
    DOI: 10.1002/for.3056
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.3056
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.3056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    2. Li, Jiahan & Tsiakas, Ilias, 2017. "Equity premium prediction: The role of economic and statistical constraints," Journal of Financial Markets, Elsevier, vol. 36(C), pages 56-75.
    3. Hao, Xianfeng & Zhao, Yuyang & Wang, Yudong, 2020. "Forecasting the real prices of crude oil using robust regression models with regularization constraints," Energy Economics, Elsevier, vol. 86(C).
    4. Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
    5. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    6. Wang, Zheng-Xin & Wang, Zhi-Wei & Li, Qin, 2020. "Forecasting the industrial solar energy consumption using a novel seasonal GM(1,1) model with dynamic seasonal adjustment factors," Energy, Elsevier, vol. 200(C).
    7. Ziaul Haque Munim & Hans-Joachim Schramm, 2021. "Forecasting container freight rates for major trade routes: a comparison of artificial neural networks and conventional models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 310-327, June.
    8. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    9. Payman Eslami & Kihyo Jung & Daewon Lee & Amir Tjolleng, 2017. "Predicting tanker freight rates using parsimonious variables and a hybrid artificial neural network with an adaptive genetic algorithm," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(3), pages 538-550, August.
    10. Ziaul Haque Munim & Hans-Joachim Schramm, 2017. "Forecasting container shipping freight rates for the Far East – Northern Europe trade lane," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 106-125, March.
    11. Spyros Makridakis & Andreas Merikas & Anna Merika & Mike G. Tsionas & Marwan Izzeldin, 2020. "A novel forecasting model for the Baltic dry index utilizing optimal squeezing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 56-68, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    2. Zhang, Yaojie & Wang, Yudong, 2023. "Forecasting crude oil futures market returns: A principal component analysis combination approach," International Journal of Forecasting, Elsevier, vol. 39(2), pages 659-673.
    3. Liu, Guangqiang & Guo, Xiaozhu, 2022. "Forecasting stock market volatility using commodity futures volatility information," Resources Policy, Elsevier, vol. 75(C).
    4. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    5. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    6. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    7. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    8. Khan, Faridoon & Muhammadullah, Sara & Sharif, Arshian & Lee, Chien-Chiang, 2024. "The role of green energy stock market in forecasting China's crude oil market: An application of IIS approach and sparse regression models," Energy Economics, Elsevier, vol. 130(C).
    9. Yaojie Zhang & Yudong Wang & Feng Ma, 2021. "Forecasting US stock market volatility: How to use international volatility information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 733-768, August.
    10. Wang, Yudong & Hao, Xianfeng & Wu, Chongfeng, 2021. "Forecasting stock returns: A time-dependent weighted least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
    11. Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
    12. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2022. "Geopolitical risk trends and crude oil price predictability," Energy, Elsevier, vol. 258(C).
    13. Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
    14. Zhang, Yaojie & He, Mengxi & Wen, Danyan & Wang, Yudong, 2023. "Forecasting crude oil price returns: Can nonlinearity help?," Energy, Elsevier, vol. 262(PB).
    15. Wang, Yudong & Liu, Li & Ma, Feng & Diao, Xundi, 2018. "Momentum of return predictability," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 141-156.
    16. Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    17. Ma, Feng & Lu, Xinjie & Liu, Jia & Huang, Dengshi, 2022. "Macroeconomic attention and stock market return predictability," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    18. Mengxi He & Xianfeng Hao & Yaojie Zhang & Fanyi Meng, 2021. "Forecasting stock return volatility using a robust regression model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1463-1478, December.
    19. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    20. Liu, Shan & Li, Ziwei, 2023. "Macroeconomic attention and oil futures volatility prediction," Finance Research Letters, Elsevier, vol. 57(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:43:y:2024:i:3:p:802-815. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.