IDEAS home Printed from https://ideas.repec.org/r/bla/jorssc/v67y2018i5p1275-1304.html
   My bibliography  Save this item

Unravelling the predictive power of telematics data in car insurance pricing

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Donatella Porrini & Giulio Fusco & Cosimo Magazzino, 2020. "Black boxes and market efficiency: the effect on premiums in the Italian motor-vehicle insurance market," European Journal of Law and Economics, Springer, vol. 49(3), pages 455-472, June.
  2. Shengkun Xie, 2021. "Improving Explainability of Major Risk Factors in Artificial Neural Networks for Auto Insurance Rate Regulation," Risks, MDPI, vol. 9(7), pages 1-21, July.
  3. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
  4. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
  5. Martin Eling & Irina Gemmo & Danjela Guxha & Hato Schmeiser, 2024. "Big data, risk classification, and privacy in insurance markets," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 49(1), pages 75-126, March.
  6. Marjan Qazvini, 2019. "On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study," Risks, MDPI, vol. 7(3), pages 1-17, June.
  7. Shengkun Xie, 2019. "Defining Geographical Rating Territories in Auto Insurance Regulation by Spatially Constrained Clustering," Risks, MDPI, vol. 7(2), pages 1-20, April.
  8. Laura Grassi, 2024. "In a world of Open Finance, are customers willing to share data? An analysis of the data-driven insurance business," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 14(3), pages 727-753, September.
  9. Jean-Philippe Boucher & Roxane Turcotte, 2020. "A Longitudinal Analysis of the Impact of Distance Driven on the Probability of Car Accidents," Risks, MDPI, vol. 8(3), pages 1-19, September.
  10. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
  11. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2023. "Empirical risk assessment of maintenance costs under full-service contracts," European Journal of Operational Research, Elsevier, vol. 304(2), pages 476-493.
  12. Sojung Kim & Marcel Kleiber & Stefan Weber, 2022. "Microscopic Traffic Models, Accidents, and Insurance Losses," Papers 2208.12530, arXiv.org, revised Nov 2023.
  13. Alfiero, Simona & Battisti, Enrico & Ηadjielias, Elias, 2022. "Black box technology, usage-based insurance, and prediction of purchase behavior: Evidence from the auto insurance sector," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
  14. Etye Steinberg, 2022. "Run for Your Life: The Ethics of Behavioral Tracking in Insurance," Journal of Business Ethics, Springer, vol. 179(3), pages 665-682, September.
  15. Chen, Yan & Zhang, Lei & Zhao, Yulu & Xu, Bing, 2022. "Implementation of penalized survival models in churn prediction of vehicle insurance," Journal of Business Research, Elsevier, vol. 153(C), pages 162-171.
  16. Jessica Pesantez-Narvaez & Montserrat Guillen & Manuela Alcañiz, 2019. "Predicting Motor Insurance Claims Using Telematics Data—XGBoost versus Logistic Regression," Risks, MDPI, vol. 7(2), pages 1-16, June.
  17. Montserrat Guillen & Ana M. Pérez-Marín & Mercedes Ayuso & Jens Perch Nielsen, 2018. "“Exposure to risk increases the excess of zero accident claims frequency in automobile insurance”," IREA Working Papers 201810, University of Barcelona, Research Institute of Applied Economics, revised May 2018.
  18. Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
  19. Meng, Shengwang & Gao, Yaqian & Huang, Yifan, 2022. "Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 115-127.
  20. Guangyuan Gao & Mario V. Wüthrich, 2019. "Convolutional Neural Network Classification of Telematics Car Driving Data," Risks, MDPI, vol. 7(1), pages 1-18, January.
  21. Shengkun Xie, 2024. "Analyzing the Influence of Telematics-Based Pricing Strategies on Traditional Rating Factors in Auto Insurance Rate Regulation," Mathematics, MDPI, vol. 12(19), pages 1-23, October.
  22. Germ`a Coenders & N'uria Arimany Serrat, 2023. "Accounting statement analysis at industry level. A gentle introduction to the compositional approach," Papers 2305.16842, arXiv.org, revised Sep 2024.
  23. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
  24. Christian Eckert & Christof Neunsinger & Katrin Osterrieder, 2022. "Managing customer satisfaction: digital applications for insurance companies," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(3), pages 569-602, July.
  25. Boonen, Tim J. & Guillen, Montserrat & Santolino, Miguel, 2019. "Forecasting compositional risk allocations," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 79-86.
  26. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
  27. Kevin Kuo & Daniel Lupton, 2020. "Towards Explainability of Machine Learning Models in Insurance Pricing," Papers 2003.10674, arXiv.org.
  28. Banghee So & Jean-Philippe Boucher & Emiliano A. Valdez, 2021. "Synthetic Dataset Generation of Driver Telematics," Risks, MDPI, vol. 9(4), pages 1-19, March.
  29. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2018. "Multivariate credibility modeling for usage-based motor insurance pricing with behavioral data," LIDAM Discussion Papers ISBA 2018032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  30. Farha Usman & Jennifer S. K. Chan & Udi E. Makov & Yang Wang & Alice X. D. Dong, 2024. "Claim Prediction and Premium Pricing for Telematics Auto Insurance Data Using Poisson Regression with Lasso Regularisation," Risks, MDPI, vol. 12(9), pages 1-33, August.
  31. Vikas Chauhan & Rohit Joshi & Vipin Choudhary, 2024. "Understanding intention to adopt telematics-based automobile insurance in an emerging economy: a mixed-method approach," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 29(3), pages 1017-1036, September.
  32. Gao, Guangyuan & Wüthrich, Mario V. & Yang, Hanfang, 2019. "Evaluation of driving risk at different speeds," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 108-119.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.