IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v290y2021i2p530-545.html
   My bibliography  Save this article

Pricing service maintenance contracts using predictive analytics

Author

Listed:
  • Deprez, Laurens
  • Antonio, Katrien
  • Boute, Robert

Abstract

As more manufacturers shift their focus from selling products to end solutions, full-service maintenance contracts gain traction in the business world. These contracts cover all maintenance related costs during a predetermined horizon in exchange for a fixed service fee and relieve customers from uncertain maintenance costs. To guarantee profitability, the service fees should at least cover the expected costs during the contract horizon. As these expected costs may depend on several machine-dependent characteristics, e.g. operational environment, the service fees should also be differentiated based on these characteristics. If not, customers that are less prone to high maintenance costs will not buy into or renege on the contract. The latter can lead to adverse selection and leave the service provider with a maintenance-heavy portfolio, which may be detrimental to the profitability of the service contracts. We contribute to the literature with a data-driven tariff plan based on the calibration of predictive models that take into account the different machine profiles. This conveys to the service provider which machine profiles should be attracted at which price. We demonstrate the advantage of a differentiated tariff plan and show how it better protects against adverse selection.

Suggested Citation

  • Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
  • Handle: RePEc:eee:ejores:v:290:y:2021:i:2:p:530-545
    DOI: 10.1016/j.ejor.2020.08.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720307359
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.08.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    2. Edward W. (Jed) Frees & Glenn Meyers & A. David Cummings, 2014. "Insurance Ratemaking and a Gini Index," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(2), pages 335-366, June.
    3. Rob Kaas & Marc Goovaerts & Jan Dhaene & Michel Denuit, 2008. "Modern Actuarial Risk Theory," Springer Books, Springer, edition 2, number 978-3-540-70998-5, January.
    4. Wu, Shaomin, 2019. "A failure process model with the exponential smoothing of intensity functions," European Journal of Operational Research, Elsevier, vol. 275(2), pages 502-513.
    5. Mohamed Larbi Rebaiaia & Daoud Ait-kadi & Afshin Jamshidi, 2017. "Periodic replacement strategies: optimality conditions and numerical performance comparisons," International Journal of Production Research, Taylor & Francis Journals, vol. 55(23), pages 7135-7152, December.
    6. Jose A. Guajardo & Morris A. Cohen & Sang-Hyun Kim & Serguei Netessine, 2012. "Impact of Performance-Based Contracting on Product Reliability: An Empirical Analysis," Management Science, INFORMS, vol. 58(5), pages 961-979, May.
    7. Dimitris Bertsimas & Nathan Kallus, 2020. "From Predictive to Prescriptive Analytics," Management Science, INFORMS, vol. 66(3), pages 1025-1044, March.
    8. Nitin Bakshi & Sang-Hyun Kim & Nicos Savva, 2015. "Signaling New Product Reliability with After-Sales Service Contracts," Management Science, INFORMS, vol. 61(8), pages 1812-1829, August.
    9. Wolfgang Ulaga & Werner Reinartz, 2011. "Hybrid Offerings: How Manufacturing Firms Combine Goods and Services Successfully," Post-Print hal-00642039, HAL.
    10. Frees, Edward W. & Meyers, Glenn & Cummings, A. David, 2011. "Summarizing Insurance Scores Using a Gini Index," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1085-1098.
    11. Poppe, Joeri & Boute, Robert N. & Lambrecht, Marc R., 2018. "A hybrid condition-based maintenance policy for continuously monitored components with two degradation thresholds," European Journal of Operational Research, Elsevier, vol. 268(2), pages 515-532.
    12. Luo, Ming & Wu, Shaomin, 2018. "A mean-variance optimisation approach to collectively pricing warranty policies," International Journal of Production Economics, Elsevier, vol. 196(C), pages 101-112.
    13. Shey-Huei Sheu & Suh-Huey Li & Chin-Chih Chang, 2012. "A generalised maintenance policy with age-dependent minimal repair cost for a system subject to shocks under periodic overhaul," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(6), pages 1007-1013.
    14. W Wang & P A Scarf & M A J Smith, 2000. "On the application of a model of condition-based maintenance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(11), pages 1218-1227, November.
    15. de Jong,Piet & Heller,Gillian Z., 2008. "Generalized Linear Models for Insurance Data," Cambridge Books, Cambridge University Press, number 9780521879149, October.
    16. Huber, Sebastian & Spinler, Stefan, 2012. "Pricing of full-service repair contracts," European Journal of Operational Research, Elsevier, vol. 222(1), pages 113-121.
    17. Luo, Ming & Wu, Shaomin, 2018. "A value-at-risk approach to optimisation of warranty policy," European Journal of Operational Research, Elsevier, vol. 267(2), pages 513-522.
    18. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    19. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
    20. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    21. Gebauer, Heiko & Fleisch, Elgar & Friedli, Thomas, 2005. "Overcoming the Service Paradox in Manufacturing Companies," European Management Journal, Elsevier, vol. 23(1), pages 14-26, February.
    22. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2014. "Application of reliability models with covariates in spare part prediction and optimization – A case study," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 1-7.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Ying & Xia, Tangbin & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2022. "Optimal maintenance service strategy for OEM entering competitive MRO market under opposite patterns," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2023. "Empirical risk assessment of maintenance costs under full-service contracts," European Journal of Operational Research, Elsevier, vol. 304(2), pages 476-493.
    3. Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
    4. Li, Ting & He, Shuguang & Zhao, Xiujie & Liu, Bin, 2023. "Warranty service contracts design for deteriorating products with maintenance duration commitments," International Journal of Production Economics, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2023. "Empirical risk assessment of maintenance costs under full-service contracts," European Journal of Operational Research, Elsevier, vol. 304(2), pages 476-493.
    2. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.
    3. Chenglong Ye & Lin Zhang & Mingxuan Han & Yanjia Yu & Bingxin Zhao & Yuhong Yang, 2022. "Combining Predictions of Auto Insurance Claims," Econometrics, MDPI, vol. 10(2), pages 1-15, April.
    4. Mihaela Covrig & Iulian Mircea & Gheorghita Zbaganu & Alexandru Coser & Alexandru Tindeche, 2015. "Using R In Generalized Linear Models," Romanian Statistical Review, Romanian Statistical Review, vol. 63(3), pages 33-45, September.
    5. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    6. Lu, Zhen & Shang, Jennifer, 2019. "Warranty mechanism for pre-owned tech products: Collaboration between E-tailers and online warranty provider," International Journal of Production Economics, Elsevier, vol. 211(C), pages 119-131.
    7. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    8. Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
    9. Oh, Rosy & Jeong, Himchan & Ahn, Jae Youn & Valdez, Emiliano A., 2021. "A multi-year microlevel collective risk model," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 309-328.
    10. George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
    11. Shi, Peng & Feng, Xiaoping & Ivantsova, Anastasia, 2015. "Dependent frequency–severity modeling of insurance claims," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 417-428.
    12. Katrien Antonio & Emiliano Valdez, 2012. "Statistical concepts of a priori and a posteriori risk classification in insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 187-224, June.
    13. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    14. Kaiwen Wang & Jiehui Ding & Kristen R. Lidwell & Scott Manski & Gee Y. Lee & Emilio Xavier Esposito, 2019. "Treatment Level and Store Level Analyses of Healthcare Data," Risks, MDPI, vol. 7(2), pages 1-22, April.
    15. Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
    16. Cheung, Eric C.K. & Ni, Weihong & Oh, Rosy & Woo, Jae-Kyung, 2021. "Bayesian credibility under a bivariate prior on the frequency and the severity of claims," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 274-295.
    17. Anna Mateja Punstein & Johannes Glückler, 2021. "How Small and Medium Sized Firms Walk the Path to Hybridity," Sustainability, MDPI, vol. 13(5), pages 1-15, February.
    18. Tzougas, George, 2020. "EM estimation for the Poisson-Inverse Gamma regression model with varying dispersion: an application to insurance ratemaking," LSE Research Online Documents on Economics 106539, London School of Economics and Political Science, LSE Library.
    19. Tzougas, George & Yik, Woo Hee & Mustaqeem, Muhammad Waqar, 2019. "Insurance ratemaking using the Exponential-Lognormal regression model," LSE Research Online Documents on Economics 101729, London School of Economics and Political Science, LSE Library.
    20. Siri Jagstedt & Magnus Persson, 2019. "Using Platform Strategies In The Development Of Integrated Product-Service Solutions," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 23(04), pages 1-36, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:2:p:530-545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.