Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018.
"Unravelling the predictive power of telematics data in car insurance pricing,"
Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Unraveling the predictive power of telematics data in car insurance pricing," Working Papers of Department of Decision Sciences and Information Management, Leuven 552745, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unraveling the predictive power of telematics data in car insurance pricing," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 618916, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unraveling the predictive power of telematics data in car insurance pricing," Working Papers of Department of Decision Sciences and Information Management, Leuven 618916, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2016. "Unraveling the predictive power of telematics data in car insurance pricing," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 552745, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
- Cameron,A. Colin & Trivedi,Pravin K., 2013.
"Regression Analysis of Count Data,"
Cambridge Books,
Cambridge University Press, number 9781107667273, September.
- Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107014169, October.
- Rainer Winkelmann, 2008. "Econometric Analysis of Count Data," Springer Books, Springer, edition 0, number 978-3-540-78389-3, July.
- Dionne, G & Vanasse, C, 1992.
"Automobile Insurance Ratemaking in the Presence of Asymmetrical Information,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(2), pages 149-165, April-Jun.
- Dionne, G. & Vanasse, C., 1988. "Automobile Insurance Ratemaking In The Presence Of Asymmetric Information," Cahiers de recherche 8834, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
- Dionne, G. & Vanasse, C., 1988. "Automobile Insurance Ratemaking in the Presence of Asymmetric Information," Cahiers de recherche 8834, Universite de Montreal, Departement de sciences economiques.
- Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019.
"Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data,"
Transportation, Springer, vol. 46(3), pages 735-752, June.
- Mercedes Ayuso & Montserrat Guillén & Jens Perch Nielsen, 2016. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Working Papers XREAP2016-08, Xarxa de Referència en Economia Aplicada (XREAP), revised Dec 2016.
- Mercedes Ayuso & Montserrat Guillén & Jens Perch Nielsen, 2017. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Working Papers 2017-01, Universitat de Barcelona, UB Riskcenter.
- Ehsan Ormoz & Farzad Eskandari, 2016. "Variable selection in finite mixture of semi-parametric regression models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(3), pages 695-711, February.
- Lin Dai & Junhui Yin & Zhengfen Xie & Liucang Wu, 2019. "Robust variable selection in finite mixture of regression models using the t distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(21), pages 5370-5386, November.
- Qingguo Tang & R. J. Karunamuni, 2018. "Robust variable selection for finite mixture regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 489-521, June.
- Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
- Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
- Junhui Yin & Liucang Wu & Lin Dai, 2020. "Variable selection in finite mixture of regression models using the skew-normal distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(16), pages 2941-2960, December.
- Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
- Leisch, Friedrich, 2004. "FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i08).
- Zhengmin Duan & Yonglian Chang & Qi Wang & Tianyao Chen & Qing Zhao, 2018. "A Logistic Regression Based Auto Insurance Rate-Making Model Designed for the Insurance Rate Reform," IJFS, MDPI, vol. 6(1), pages 1-16, February.
- Yip, Karen C.H. & Yau, Kelvin K.W., 2005. "On modeling claim frequency data in general insurance with extra zeros," Insurance: Mathematics and Economics, Elsevier, vol. 36(2), pages 153-163, April.
- Brown, Garfield O. & Buckley, Winston S., 2015. "Experience rating with Poisson mixtures," Annals of Actuarial Science, Cambridge University Press, vol. 9(2), pages 304-321, September.
- Stroinski, Krzysztof J. & Currie, Iain D., 1989. "Selection of variables for automobile insurance rating," Insurance: Mathematics and Economics, Elsevier, vol. 8(1), pages 35-46, March.
- Khalili, Abbas & Chen, Jiahua, 2007. "Variable Selection in Finite Mixture of Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1025-1038, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marjan Qazvini, 2019. "On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study," Risks, MDPI, vol. 7(3), pages 1-17, June.
- Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
- Montserrat Guillen & Ana M. Pérez-Marín & Mercedes Ayuso & Jens Perch Nielsen, 2018. "“Exposure to risk increases the excess of zero accident claims frequency in automobile insurance”," IREA Working Papers 201810, University of Barcelona, Research Institute of Applied Economics, revised May 2018.
- Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
- Jean-Philippe Boucher & Roxane Turcotte, 2020. "A Longitudinal Analysis of the Impact of Distance Driven on the Probability of Car Accidents," Risks, MDPI, vol. 8(3), pages 1-19, September.
- Payandeh Najafabadi Amir T. & MohammadPour Saeed, 2018. "A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate–Making Systems," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 12(2), pages 1-31, July.
- Lluís Bermúdez & Dimitris Karlis & Isabel Morillo, 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models," Risks, MDPI, vol. 8(1), pages 1-13, January.
- Mihaela Covrig & Iulian Mircea & Gheorghita Zbaganu & Alexandru Coser & Alexandru Tindeche, 2015. "Using R In Generalized Linear Models," Romanian Statistical Review, Romanian Statistical Review, vol. 63(3), pages 33-45, September.
- Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
- Carl Lee & Felix Famoye & Alfred Akinsete, 2021. "Generalized Count Data Regression Models and Their Applications to Health Care Data," Annals of Data Science, Springer, vol. 8(2), pages 367-386, June.
- Mihaela DAVID, 2014. "Modeling The Frequency Of Claims In Auto Insurance With Application To A French Case," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 69-85, June.
- Donatella Porrini & Giulio Fusco & Cosimo Magazzino, 2020. "Black boxes and market efficiency: the effect on premiums in the Italian motor-vehicle insurance market," European Journal of Law and Economics, Springer, vol. 49(3), pages 455-472, June.
- Gregori Baetschmann & Rainer Winkelmann, 2014.
"A dynamic hurdle model for zero-inflated count data: with an application to health care utilization,"
ECON - Working Papers
151, Department of Economics - University of Zurich.
- Gregori Baetschmann & Rainer Winkelmann, 2014. "A Dynamic Hurdle Model for Zero-Inflated Count Data: With an Application to Health Care Utilization," SOEPpapers on Multidisciplinary Panel Data Research 648, DIW Berlin, The German Socio-Economic Panel (SOEP).
- Mihaela COVRIG & Dumitru BADEA, 2017. "Some Generalized Linear Models for the Estimation of the Mean Frequency of Claims in Motor Insurance," ECONOMIC COMPUTATION AND ECONOMIC CYBERNETICS STUDIES AND RESEARCH, Faculty of Economic Cybernetics, Statistics and Informatics, vol. 51(4), pages 91-107.
- Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
- Claudia Czado & Holger Schabenberger & Vinzenz Erhardt, 2014. "Non nested model selection for spatial count regression models with application to health insurance," Statistical Papers, Springer, vol. 55(2), pages 455-476, May.
- George Tzougas, 2020. "EM Estimation for the Poisson-Inverse Gamma Regression Model with Varying Dispersion: An Application to Insurance Ratemaking," Risks, MDPI, vol. 8(3), pages 1-23, September.
- David Mihaela & Jemna Dănuţ-Vasile, 2015. "Modeling the Frequency of Auto Insurance Claims by Means of Poisson and Negative Binomial Models," Scientific Annals of Economics and Business, Sciendo, vol. 62(2), pages 151-168, July.
- Miguel Santolino & Jean-Philippe Boucher, 2009. "Modelling the disability severity score in motor insurance claims: an application to the Spanish case," IREA Working Papers 200902, University of Barcelona, Research Institute of Applied Economics, revised Jan 2009.
- Banghee So & Jean-Philippe Boucher & Emiliano A. Valdez, 2021. "Synthetic Dataset Generation of Driver Telematics," Risks, MDPI, vol. 9(4), pages 1-19, March.
More about this item
Keywords
mixture poisson regression; variable selection; telematics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:4:p:83-:d:791726. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.