IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.16723.html
   My bibliography  Save this paper

Improving Business Insurance Loss Models by Leveraging InsurTech Innovation

Author

Listed:
  • Zhiyu Quan
  • Changyue Hu
  • Panyi Dong
  • Emiliano A. Valdez

Abstract

Recent transformative and disruptive advancements in the insurance industry have embraced various InsurTech innovations. In particular, with the rapid progress in data science and computational capabilities, InsurTech is able to integrate a multitude of emerging data sources, shedding light on opportunities to enhance risk classification and claims management. This paper presents a groundbreaking effort as we combine real-life proprietary insurance claims information together with InsurTech data to enhance the loss model, a fundamental component of insurance companies' risk management. Our study further utilizes various machine learning techniques to quantify the predictive improvement of the InsurTech-enhanced loss model over that of the insurance in-house. The quantification process provides a deeper understanding of the value of the InsurTech innovation and advocates potential risk factors that are unexplored in traditional insurance loss modeling. This study represents a successful undertaking of an academic-industry collaboration, suggesting an inspiring path for future partnerships between industry and academic institutions.

Suggested Citation

  • Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
  • Handle: RePEc:arx:papers:2401.16723
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.16723
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    2. Yi Yang & Wei Qian & Hui Zou, 2018. "Insurance Premium Prediction via Gradient Tree-Boosted Tweedie Compound Poisson Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(3), pages 456-470, July.
    3. Guangyuan Gao & Shengwang Meng & Mario V. Wüthrich, 2019. "Claims frequency modeling using telematics car driving data," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(2), pages 143-162, February.
    4. Daniel W. Apley & Jingyu Zhu, 2020. "Visualizing the effects of predictor variables in black box supervised learning models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(4), pages 1059-1086, September.
    5. repec:cup:bracjl:v:24:y:2019:i::p:-_22 is not listed on IDEAS
    6. Xian Xu & Peter Zweifel, 2020. "A framework for the evaluation of InsurTech," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 23(4), pages 305-329, December.
    7. Jessica Pesantez-Narvaez & Montserrat Guillen & Manuela Alcañiz, 2019. "Predicting Motor Insurance Claims Using Telematics Data—XGBoost versus Logistic Regression," Risks, MDPI, vol. 7(2), pages 1-16, June.
    8. Weidner, Wiltrud & Transchel, Fabian W.G. & Weidner, Robert, 2017. "Telematic driving profile classification in car insurance pricing," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 213-236, September.
    9. Roel Henckaerts & Marie-Pier Côté & Katrien Antonio & Roel Verbelen, 2021. "Boosting Insights in Insurance Tariff Plans with Tree-Based Machine Learning Methods," North American Actuarial Journal, Taylor & Francis Journals, vol. 25(2), pages 255-285, April.
    10. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    11. Xin Che & Andre Liebenberg & Jianren Xu, 2022. "Usage-Based Insurance—Impact on Insurers and Potential Implications for InsurTech," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(3), pages 428-455, August.
    12. repec:cup:bracjl:v:24:y:2019:i::p:-_24 is not listed on IDEAS
    13. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez-Marín & Valandis Elpidorou, 2020. "Can Automobile Insurance Telematics Predict the Risk of Near-Miss Events?," North American Actuarial Journal, Taylor & Francis Journals, vol. 24(1), pages 141-152, January.
    14. Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
    15. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez‐Marín, 2021. "Near‐miss telematics in motor insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 569-589, September.
    16. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    17. Jean-Philippe Boucher & Steven Côté & Montserrat Guillen, 2017. "Exposure as Duration and Distance in Telematics Motor Insurance Using Generalized Additive Models," Risks, MDPI, vol. 5(4), pages 1-23, September.
    18. Simon C. K. Lee & Sheldon Lin, 2018. "Delta Boosting Machine with Application to General Insurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 22(3), pages 405-425, July.
    19. Hu, Changyue & Quan, Zhiyu & Chong, Wing Fung, 2022. "Imbalanced learning for insurance using modified loss functions in tree-based models," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 13-32.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Duval & Jean‐Philippe Boucher & Mathieu Pigeon, 2023. "Enhancing claim classification with feature extraction from anomaly‐detection‐derived routine and peculiarity profiles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 421-458, June.
    2. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    3. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    4. Meng, Shengwang & Gao, Yaqian & Huang, Yifan, 2022. "Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 115-127.
    5. Shengkun Xie, 2024. "Analyzing the Influence of Telematics-Based Pricing Strategies on Traditional Rating Factors in Auto Insurance Rate Regulation," Mathematics, MDPI, vol. 12(19), pages 1-23, October.
    6. Simon, Pierre-Alexandre & Trufin, Julien & Denuit, Michel, 2023. "Bivariate Poisson credibility model and bonus-malus scale for claim and near-claim events," LIDAM Discussion Papers ISBA 2023014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.
    8. Petros C. Lazaridis & Ioannis E. Kavvadias & Konstantinos Demertzis & Lazaros Iliadis & Lazaros K. Vasiliadis, 2023. "Interpretable Machine Learning for Assessing the Cumulative Damage of a Reinforced Concrete Frame Induced by Seismic Sequences," Sustainability, MDPI, vol. 15(17), pages 1-31, August.
    9. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez‐Marín, 2021. "Near‐miss telematics in motor insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 569-589, September.
    10. Valencia, Oscar & Parra, Diego A. & Díaz, Juan Camilo, 2022. "Assessing Macro-Fiscal Risk for Latin American and Caribbean Countries," IDB Publications (Working Papers) 12482, Inter-American Development Bank.
    11. Martin Eling & Irina Gemmo & Danjela Guxha & Hato Schmeiser, 2024. "Big data, risk classification, and privacy in insurance markets," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 49(1), pages 75-126, March.
    12. Kim Christensen & Mathias Siggaard & Bezirgen Veliyev, 2023. "A Machine Learning Approach to Volatility Forecasting," Journal of Financial Econometrics, Oxford University Press, vol. 21(5), pages 1680-1727.
    13. Gao, Lisa & Shi, Peng, 2022. "Leveraging high-resolution weather information to predict hail damage claims: A spatial point process for replicated point patterns," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 161-179.
    14. Messner, Wolfgang, 2024. "Distance is the spice, but not the whole enchilada: Country-pair psychic distance stimuli and country fixed effects in a deep learning implementation of the trade flow model," International Business Review, Elsevier, vol. 33(1).
    15. Trufin, Julien & Denuit, Michel, 2021. "Boosting cost-complexity pruned trees On Tweedie responses: the ABT machine," LIDAM Discussion Papers ISBA 2021015, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Banghee So & Jean-Philippe Boucher & Emiliano A. Valdez, 2021. "Synthetic Dataset Generation of Driver Telematics," Risks, MDPI, vol. 9(4), pages 1-19, March.
    17. Zhou, Jinwei & Luo, Qi, 2024. "Influence factor studies based on ensemble learning on the innovation performance of technology mergers and acquisitions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 222(C), pages 67-89.
    18. Borup, Daniel & Rapach, David E. & Schütte, Erik Christian Montes, 2023. "Mixed-frequency machine learning: Nowcasting and backcasting weekly initial claims with daily internet search volume data," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1122-1144.
    19. Gao, Guangyuan & Wüthrich, Mario V. & Yang, Hanfang, 2019. "Evaluation of driving risk at different speeds," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 108-119.
    20. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2024. "Machine-learning stock market volatility: Predictability, drivers, and economic value," International Review of Financial Analysis, Elsevier, vol. 94(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.16723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.