IDEAS home Printed from https://ideas.repec.org/p/aiz/louvad/2018032.html
   My bibliography  Save this paper

Multivariate credibility modeling for usage-based motor insurance pricing with behavioral data

Author

Listed:
  • Denuit, Michel
  • Guillen, Montserrat
  • Trufin, Julien

Abstract

No abstract is available for this item.

Suggested Citation

  • Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2018. "Multivariate credibility modeling for usage-based motor insurance pricing with behavioral data," LIDAM Discussion Papers ISBA 2018032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvad:2018032
    as

    Download full text from publisher

    File URL: https://dial.uclouvain.be/pr/boreal/fr/object/boreal%3A208814/datastream/PDF_01/view
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    2. Mercedes Ayuso & Montserrat Guillen & Ana María Pérez-Marín, 2016. "Telematics and Gender Discrimination: Some Usage-Based Evidence on Whether Men’s Risk of Accidents Differs from Women’s," Risks, MDPI, vol. 4(2), pages 1-10, April.
    3. Jean-Philippe Boucher & Michel Denuit & Montserrat Guillén, 2007. "Risk Classification for Claim Counts," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(4), pages 110-131.
    4. Weidner, Wiltrud & Transchel, Fabian W.G. & Weidner, Robert, 2017. "Telematic driving profile classification in car insurance pricing," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 213-236, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montserrat Guillen & Ana M. Pérez-Marín & Mercedes Ayuso & Jens Perch Nielsen, 2018. "“Exposure to risk increases the excess of zero accident claims frequency in automobile insurance”," IREA Working Papers 201810, University of Barcelona, Research Institute of Applied Economics, revised May 2018.
    2. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    3. Darren Shannon & Tim Jannusch & Florian David‐Spickermann & Martin Mullins & Martin Cunneen & Finbarr Murphy, 2021. "Connected and autonomous vehicle injury loss events: Potential risk and actuarial considerations for primary insurers," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(1), pages 5-35, March.
    4. Etye Steinberg, 2022. "Run for Your Life: The Ethics of Behavioral Tracking in Insurance," Journal of Business Ethics, Springer, vol. 179(3), pages 665-682, September.
    5. Donatella Porrini & Giulio Fusco & Cosimo Magazzino, 2020. "Black boxes and market efficiency: the effect on premiums in the Italian motor-vehicle insurance market," European Journal of Law and Economics, Springer, vol. 49(3), pages 455-472, June.
    6. Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
    7. Meng, Shengwang & Gao, Yaqian & Huang, Yifan, 2022. "Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 115-127.
    8. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    9. Banghee So & Jean-Philippe Boucher & Emiliano A. Valdez, 2021. "Synthetic Dataset Generation of Driver Telematics," Risks, MDPI, vol. 9(4), pages 1-19, March.
    10. Marjan Qazvini, 2019. "On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study," Risks, MDPI, vol. 7(3), pages 1-17, June.
    11. Gao, Guangyuan & Wüthrich, Mario V. & Yang, Hanfang, 2019. "Evaluation of driving risk at different speeds," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 108-119.
    12. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    13. Jean-Philippe Boucher & Roxane Turcotte, 2020. "A Longitudinal Analysis of the Impact of Distance Driven on the Probability of Car Accidents," Risks, MDPI, vol. 8(3), pages 1-19, September.
    14. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    15. Guangyuan Gao & Mario V. Wüthrich, 2019. "Convolutional Neural Network Classification of Telematics Car Driving Data," Risks, MDPI, vol. 7(1), pages 1-18, January.
    16. Shengkun Xie, 2021. "Improving Explainability of Major Risk Factors in Artificial Neural Networks for Auto Insurance Rate Regulation," Risks, MDPI, vol. 9(7), pages 1-21, July.
    17. Mihaela DAVID, 2014. "Modeling The Frequency Of Claims In Auto Insurance With Application To A French Case," Review of Economic and Business Studies, Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, issue 13, pages 69-85, June.
    18. Tzougas, George & Hoon, W. L. & Lim, J. M., 2019. "The negative binomial-inverse Gaussian regression model with an application to insurance ratemaking," LSE Research Online Documents on Economics 101728, London School of Economics and Political Science, LSE Library.
    19. Peng Shi & Glenn M. Fung & Daniel Dickinson, 2022. "Assessing hail risk for property insurers with a dependent marked point process," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 302-328, January.
    20. Gaurav Khemka & Steven Roberts & Timothy Higgins, 2017. "The Impact of Changes to the Unemployment Rate on Australian Disability Income Insurance Claim Incidence," Risks, MDPI, vol. 5(1), pages 1-18, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvad:2018032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.