My bibliography
Save this item
Market Expectations in the Cross-Section of Present Values
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carolin Pflueger & Emil Siriwardane & Adi Sunderam, 2018. "A Measure of Risk Appetite for the Macroeconomy," NBER Working Papers 24529, National Bureau of Economic Research, Inc.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Kevin Kotze & Neil Rankin & Rulof P. Burger, 2022. "Big data forecasting of South African inflation," Working Papers 873, Economic Research Southern Africa.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Liya Chu & Xue-Zhong He & Kai Li & Jun Tu, 2022. "Investor Sentiment and Paradigm Shifts in Equity Return Forecasting," Management Science, INFORMS, vol. 68(6), pages 4301-4325, June.
- Li, Jiahan & Tsiakas, Ilias, 2017.
"Equity premium prediction: The role of economic and statistical constraints,"
Journal of Financial Markets, Elsevier, vol. 36(C), pages 56-75.
- Jiahan Li & Ilias Tsiakas, 2016. "Equity Premium Prediction: The Role of Economic and Statistical Constraints," Working Paper series 16-25, Rimini Centre for Economic Analysis.
- Lutzenberger, Fabian T., 2014. "The predictability of aggregate returns on commodity futures," Review of Financial Economics, Elsevier, vol. 23(3), pages 120-130.
- Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Gonçalves, Andrei S. & Leonard, Gregory, 2023. "The fundamental-to-market ratio and the value premium decline," Journal of Financial Economics, Elsevier, vol. 147(2), pages 382-405.
- John Y. Campbell & Stefano Giglio & Christopher Polk, 2013.
"Hard Times,"
The Review of Asset Pricing Studies, Society for Financial Studies, vol. 3(1), pages 95-132.
- John Y. Campbell & Stefano Giglio & Christopher Polk, 2010. "Hard Times," NBER Working Papers 16222, National Bureau of Economic Research, Inc.
- Campbell, John Y. & Giglio, Stefano & Polk, Christopher, 2013. "Hard Times," Scholarly Articles 12172786, Harvard University Department of Economics.
- Pan, Shuiyang & Long, Suwan(Cheng) & Wang, Yiming & Xie, Ying, 2023. "Nonlinear asset pricing in Chinese stock market: A deep learning approach," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Han, Liyan & Xu, Yang & Yin, Libo, 2017. "Does investor attention matter? The attention-return relation in gold futures market," Economics Discussion Papers 2017-37, Kiel Institute for the World Economy (IfW Kiel).
- Rubio-RamÃrez, Juan Francisco & Petrella, Ivan & Antolin-Diaz, Juan, 2021.
"Dividend Momentum and Stock Return Predictability: A Bayesian Approach,"
CEPR Discussion Papers
16613, C.E.P.R. Discussion Papers.
- Juan Antolin-Diaz & Ivan Petrella & Juan F. Rubio-Ramirez, 2021. "Dividend Momentum and Stock Return Predictability: A Bayesian Approach," FRB Atlanta Working Paper 2021-25, Federal Reserve Bank of Atlanta.
- Juan Antolín-Díaz & Ivan Petrella & Juan F. Rubio-Ramírez, 2021. "Dividend Momentum and Stock Return Predictability: A Bayesian Approach," Working Papers 2021-14, FEDEA.
- Faria, Gonçalo & Verona, Fabio, 2018.
"Forecasting stock market returns by summing the frequency-decomposed parts,"
Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
- Gonçalo Faria & Fabio Verona, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Working Papers de Economia (Economics Working Papers) 05, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Research Discussion Papers 29/2016, Bank of Finland.
- Gonçalo Faria & Fabio Verona, 2017. "Forecasting stock market returns by summing the frequency-decomposed parts," CEF.UP Working Papers 1702, Universidade do Porto, Faculdade de Economia do Porto.
- Ma, Feng & Wang, Ruoxin & Lu, Xinjie & Wahab, M.I.M., 2021. "A comprehensive look at stock return predictability by oil prices using economic constraint approaches," International Review of Financial Analysis, Elsevier, vol. 78(C).
- Davide Pettenuzzo & Riccardo Sabbatucci & Allan Timmermann, 2020.
"Cash Flow News and Stock Price Dynamics,"
Journal of Finance, American Finance Association, vol. 75(4), pages 2221-2270, August.
- Timmermann, Allan & Pettenuzzo, Davide & Sabbatucci, Riccardo, 2019. "Cash Flow News and Stock Price Dynamics," CEPR Discussion Papers 14117, C.E.P.R. Discussion Papers.
- Ball, Ray & Nikolaev, Valeri V., 2022. "On earnings and cash flows as predictors of future cash flows," Journal of Accounting and Economics, Elsevier, vol. 73(1).
- Daniel Borup & Erik Christian Montes Schütte, 2022.
"In Search of a Job: Forecasting Employment Growth Using Google Trends,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
- Daniel Borup & Erik Christian Montes Schütte, 2019. "In search of a job: Forecasting employment growth using Google Trends," CREATES Research Papers 2019-13, Department of Economics and Business Economics, Aarhus University.
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2020. "Beta uncertainty," Journal of Banking & Finance, Elsevier, vol. 116(C).
- Adrian, Tobias & Muir, Tyler, 2015.
"The Cost of Capital of the Financial Sector,"
CEPR Discussion Papers
11031, C.E.P.R. Discussion Papers.
- Tobias Adrian & Evan Friedman & Tyler Muir, 2015. "The cost of capital of the financial sector," Staff Reports 755, Federal Reserve Bank of New York.
- Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
- Gupta, Rangan & Hammoudeh, Shawkat & Modise, Mampho P. & Nguyen, Duc Khuong, 2014.
"Can economic uncertainty, financial stress and consumer sentiments predict U.S. equity premium?,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 367-378.
- Rangan Gupta & Shawkat Hammoudeh & Mampho P. Modise & Duc Khuong Nguyen, 2013. "Can Economic Uncertainty, Financial Stress and Consumer Sentiments Predict U.S. Equity Premium?," Working Papers 201351, University of Pretoria, Department of Economics.
- Rangan Gupta & Shawkat Hammoudeh & Mampho P. Modise & Duc Khuong Nguyen, 2013. "Can Economic Uncertainty, Financial Stress and Consumer Sentiments Predict U.S. Equity Premium?," Working Papers 2013-20, Department of Research, Ipag Business School.
- Rangan Gupta & Shawkat Hammoudeh & Mampho P. Modise & Duc Khuong Nguyen, 2014. "Can Economic Uncertainty, Financial Stress and Consumer Senti-ments Predict U.S. Equity Premium?," Working Papers 2014-436, Department of Research, Ipag Business School.
- Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Valentin Haddad & Serhiy Kozak & Shrihari Santosh, 2017. "Predicting Relative Returns," NBER Working Papers 23886, National Bureau of Economic Research, Inc.
- Matthew R. Lyle, 2016. "Valuation: Accounting for Risk and the Expected Return. Discussion of Penman," Abacus, Accounting Foundation, University of Sydney, vol. 52(1), pages 131-139, March.
- Ardia, David & Barras, Laurent & Gagliardini, Patrick & Scaillet, Olivier, 2024.
"Is it alpha or beta? Decomposing hedge fund returns when models are misspecified,"
Journal of Financial Economics, Elsevier, vol. 154(C).
- David Ardia & Laurent Barras & Patrick Gagliardini & Olivier Scaillet, 2020. "Is it Alpha or Beta? Decomposing Hedge Fund Returns When Models are Misspecified," Swiss Finance Institute Research Paper Series 20-82, Swiss Finance Institute, revised May 2023.
- Bandi, F.M. & Perron, B. & Tamoni, A. & Tebaldi, C., 2019.
"The scale of predictability,"
Journal of Econometrics, Elsevier, vol. 208(1), pages 120-140.
- Federico M. Bandi & Bernard Perron & Andrea Tamoni & Claudio Tebaldi, 2014. "The scale of predictability," Working Papers 509, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Bandi, F.M & Perron, B & Tamoni, Andrea & Tebaldi, C., 2018. "The scale of predictability," LSE Research Online Documents on Economics 85646, London School of Economics and Political Science, LSE Library.
- Federico M. Bandi & Benoit Perron & Andrea Tamoni & Claudio Tebaldi, 2015. "The scale of predictability," CIRANO Working Papers 2015s-21, CIRANO.
- Lin, Qi, 2018. "Technical analysis and stock return predictability: An aligned approach," Journal of Financial Markets, Elsevier, vol. 38(C), pages 103-123.
- Mehmet Balcilar & Rangan Gupta & Clement Kyei, 2018. "Predicting Stock Returns And Volatility With Investor Sentiment Indices: A Reconsideration Using A Nonparametric Causality†In†Quantiles Test," Bulletin of Economic Research, Wiley Blackwell, vol. 70(1), pages 74-87, January.
- Fernando M. Duarte & Carlo Rosa, 2015.
"The equity risk premium: a review of models,"
Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
- Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Staff Reports 714, Federal Reserve Bank of New York.
- Guofu Zhou, 2018. "Measuring Investor Sentiment," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 239-259, November.
- Andrew Detzel & Jack Strauss, 2018. "Combination Return Forecasts and Portfolio Allocation with the Cross-Section of Book-to-Market Ratios [Illiquidity and stock returns: cross-section and time-series effects]," Review of Finance, European Finance Association, vol. 22(5), pages 1949-1973.
- Hoang, Khoa & Cannavan, Damien & Huang, Ronghong & Peng, Xiaowen, 2021. "Predicting stock returns with implied cost of capital: A partial least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
- Souza, Thiago de Oliveira, 2020. "Dollar carry timing," Discussion Papers on Economics 10/2020, University of Southern Denmark, Department of Economics.
- Song, Ziyu & Gong, Xiaomin & Zhang, Cheng & Yu, Changrui, 2023. "Investor sentiment based on scaled PCA method: A powerful predictor of realized volatility in the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 528-545.
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
- Song, Ziyu & Yu, Changrui, 2022. "Investor sentiment indices based on k-step PLS algorithm: A group of powerful predictors of stock market returns," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Wen, Chufu & Zhu, Haoyang & Dai, Zhifeng, 2023. "Forecasting commodity prices returns: The role of partial least squares approach," Energy Economics, Elsevier, vol. 125(C).
- Chen, Huimin (Amy) & Karim, Khondkar & Tao, Anqi, 2021. "The effect of suppliers' corporate social responsibility concerns on customers' stock price crash risk," Advances in accounting, Elsevier, vol. 52(C).
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020.
"Empirical Asset Pricing via Machine Learning,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
- Shihao Gu & Bryan Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," NBER Working Papers 25398, National Bureau of Economic Research, Inc.
- Shihao Gu & Bryan T. Kelly & Dacheng Xiu, 2018. "Empirical Asset Pricing via Machine Learning," Swiss Finance Institute Research Paper Series 18-71, Swiss Finance Institute.
- Lin, Qi, 2022. "Understanding idiosyncratic momentum in the Chinese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
- Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
- Lin, Hai & Wang, Junbo & Wu, Chunchi, 2014. "Predictions of corporate bond excess returns," Journal of Financial Markets, Elsevier, vol. 21(C), pages 123-152.
- Timmermann, Allan, 2018. "Forecasting Methods in Finance," CEPR Discussion Papers 12692, C.E.P.R. Discussion Papers.
- Zhi Da & Ravi Jagannathan & Jianfeng Shen, 2014. "Growth Expectations, Dividend Yields, and Future Stock Returns," NBER Working Papers 20651, National Bureau of Economic Research, Inc.
- Stefano Giglio & Dacheng Xiu, 2017. "Inference on Risk Premia in the Presence of Omitted Factors," NBER Working Papers 23527, National Bureau of Economic Research, Inc.
- Reis, Pedro Manuel Nogueira & Pinho, Carlos, 2020. "A new European investor sentiment index (EURsent) and its return and volatility predictability," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Djeutem, Edouard & Dunbar, Geoffrey R., 2022.
"Uncovered return parity: Equity returns and currency returns,"
Journal of International Money and Finance, Elsevier, vol. 128(C).
- Edouard Djeutem & Geoffrey R. Dunbar, 2018. "Uncovered Return Parity: Equity Returns and Currency Returns," Staff Working Papers 18-22, Bank of Canada.
- Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Ravi Jagannathan & Binying Liu, 2019.
"Dividend Dynamics, Learning, and Expected Stock Index Returns,"
Journal of Finance, American Finance Association, vol. 74(1), pages 401-448, February.
- Ravi Jagannathan & Binying Liu, 2015. "Dividend Dynamics, Learning, and Expected Stock Index Returns," NBER Working Papers 21557, National Bureau of Economic Research, Inc.
- Park, Yang-Ho, 2022. "Informed trading in foreign exchange futures: Payroll news timing," Journal of Banking & Finance, Elsevier, vol. 135(C).
- Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023.
"Pockets of Predictability,"
Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
- Timmermann, Allan & Farmer, Leland E. & Schmidt, Lawrence, 2018. "Pockets of Predictability," CEPR Discussion Papers 12885, C.E.P.R. Discussion Papers.
- Davide Pettenuzzo & Riccardo Sabbatucci & Allan Timmermann, 2018. "High-frequency Cash Flow Dynamics," Working Papers 120, Brandeis University, Department of Economics and International Business School.
- Liya Chu & Xue-Zhong He & Kai Li & Jun Tu, 2015. "Market Sentiment and Paradigm Shifts," Research Paper Series 356, Quantitative Finance Research Centre, University of Technology, Sydney.
- Zhang, Yaojie & Ma, Feng & Shi, Benshan & Huang, Dengshi, 2018. "Forecasting the prices of crude oil: An iterated combination approach," Energy Economics, Elsevier, vol. 70(C), pages 472-483.
- repec:zbw:bofrdp:2016_029 is not listed on IDEAS
- Liao, Cunfei & Luo, Qianlin & Tang, Guohao, 2021. "Aggregate liquidity premium and cross-sectional returns: Evidence from China," Economic Modelling, Elsevier, vol. 104(C).
- Andreas Neuhierl & Michael Weber & Michael Weber, 2016.
"Monetary Policy and the Stock Market: Time-Series Evidence,"
CESifo Working Paper Series
6199, CESifo.
- Michael Weber & Andreas Neuhierl, 2017. "Monetary Policy and the Stock Market: Time Series Evidence," 2017 Meeting Papers 304, Society for Economic Dynamics.
- Andreas Neuhierl & Michael Weber, 2016. "Monetary Policy and the Stock Market: Time-Series Evidence," NBER Working Papers 22831, National Bureau of Economic Research, Inc.
- Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
- Bu, Chunya & Rogers, John & Wu, Wenbin, 2021.
"A unified measure of Fed monetary policy shocks,"
Journal of Monetary Economics, Elsevier, vol. 118(C), pages 331-349.
- Chunya Bu & John Rogers & Wenbin Wu, 2019. "A Unified Measure of Fed Monetary Policy Shocks," Finance and Economics Discussion Series 2019-043, Board of Governors of the Federal Reserve System (U.S.).
- Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2022.
"The role of investor sentiment in forecasting housing returns in China: A machine learning approach,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1725-1740, December.
- Oguzhan Cepni & Rangan Gupta & Yigit Onay, 2020. "The Role of Investor Sentiment in Forecasting Housing Returns in China: A Machine Learning Approach," Working Papers 202055, University of Pretoria, Department of Economics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Zhaoxing Gao & Ruey S. Tsay, 2023. "Supervised Dynamic PCA: Linear Dynamic Forecasting with Many Predictors," Papers 2307.07689, arXiv.org.
- Neuhierl, Andreas & Weber, Michael, 2019. "Monetary policy communication, policy slope, and the stock market," Journal of Monetary Economics, Elsevier, vol. 108(C), pages 140-155.
- Moreira, Alan & Muir, Tyler, 2019. "Should Long-Term Investors Time Volatility?," Journal of Financial Economics, Elsevier, vol. 131(3), pages 507-527.
- Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019.
"Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland,"
International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.
- Dr. Alain Galli & Dr. Christian Hepenstrick & Dr. Rolf Scheufele, 2017. "Mixed-frequency models for tracking short-term economic developments in Switzerland," Working Papers 2017-02, Swiss National Bank.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022.
"Scaled PCA: A New Approach to Dimension Reduction,"
Management Science, INFORMS, vol. 68(3), pages 1678-1695, March.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022. "Scaled PCA: A New Approach to Dimension Reduction," CEMA Working Papers 678, China Economics and Management Academy, Central University of Finance and Economics.
- Antonio Marsi, 2023. "Predicting European stock returns using machine learning," SN Business & Economics, Springer, vol. 3(7), pages 1-25, July.
- Bruno Feunou & Mohammad R Jahan-Parvar & Cédric Okou, 2018.
"Downside Variance Risk Premium,"
Journal of Financial Econometrics, Oxford University Press, vol. 16(3), pages 341-383.
- Bruno Feunou & Mohammad Jahan-Parvar & Cedric Okou, 2015. "Downside Variance Risk Premium," Finance and Economics Discussion Series 2015-20, Board of Governors of the Federal Reserve System (U.S.).
- Bruno Feunou & Mohammad R. Jahan-Parvar & Cédric Okou, 2015. "Downside Variance Risk Premium," Staff Working Papers 15-36, Bank of Canada.
- Chatelais, Nicolas & Stalla-Bourdillon, Arthur & Chinn, Menzie D., 2023.
"Forecasting real activity using cross-sectoral stock market information,"
Journal of International Money and Finance, Elsevier, vol. 131(C).
- Nicolas Chatelais & Arthur Stalla-Bourdillon & Menzie Chinn, 2023. "Forecasting real activity using cross-sectoral stock market information," Post-Print hal-04459605, HAL.
- Brennan, M.J. & Taylor, Alex P., 2023. "Expected returns and risk in the stock market," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 276-300.
- Feng Zhao & Guofu Zhou & Xiaoneng Zhu, 2021. "Unspanned Global Macro Risks in Bond Returns," Management Science, INFORMS, vol. 67(12), pages 7825-7843, December.
- Fan, Jianqing & Xue, Lingzhou & Yao, Jiawei, 2017. "Sufficient forecasting using factor models," Journal of Econometrics, Elsevier, vol. 201(2), pages 292-306.
- Lu, Fei & Ma, Feng & Hu, Shiyang, 2024. "Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting," Energy Economics, Elsevier, vol. 129(C).
- Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Taamouti, Abderrahim, 2019. "The information content of forward moments," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 527-541.
- João F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020.
"Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?,"
Mathematics, MDPI, vol. 8(11), pages 1-16, November.
- Joao F. Caldeira & Rangan Gupta & Hudson S. Torrent, 2020. "Forecasting U.S. Aggregate Stock Market Excess Return: Do Functional Data Analysis Add Economic Value?," Working Papers 202087, University of Pretoria, Department of Economics.
- Chue, Timothy K. & Xu, Jin Karen, 2022. "Profitability, asset investment, and aggregate stock returns," Journal of Banking & Finance, Elsevier, vol. 143(C).
- Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).
- Valentin Haddad & Serhiy Kozak & Shrihari Santosh & Stijn Van Nieuwerburgh, 2020.
"Factor Timing,"
The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 1980-2018.
- Valentin Haddad & Serhiy Kozak & Shrihari Santosh, 2020. "Factor Timing," NBER Working Papers 26708, National Bureau of Economic Research, Inc.
- Firoozye, Nikan & Tan, Vincent & Zohren, Stefan, 2023.
"Canonical portfolios: Optimal asset and signal combination,"
Journal of Banking & Finance, Elsevier, vol. 154(C).
- Nikan Firoozye & Vincent Tan & Stefan Zohren, 2022. "Canonical Portfolios: Optimal Asset and Signal Combination," Papers 2202.10817, arXiv.org, revised Jul 2023.
- Andrew Detzel & Hong Liu & Jack Strauss & Guofu Zhou & Yingzi Zhu, 2021. "Learning and predictability via technical analysis: Evidence from bitcoin and stocks with hard‐to‐value fundamentals," Financial Management, Financial Management Association International, vol. 50(1), pages 107-137, March.
- Andreas Neuhierl & Michael Weber, 2016.
"Monetary Policy and the Stock Market: Time-Series Evidence,"
NBER Working Papers
22831, National Bureau of Economic Research, Inc.
- Michael Weber & Andreas Neuhierl, 2017. "Monetary Policy and the Stock Market: Time Series Evidence," 2017 Meeting Papers 304, Society for Economic Dynamics.
- Michael Weber & Andreas Neuhierl, 2016. "Monetary Policy and the Stock Market: Time-Series Evidence," Working Papers 2016-26, Becker Friedman Institute for Research In Economics.
- Andreas Neuhierl & Michael Weber, 2016. "Monetary Policy and the Stock Market: Time-Series Evidence," CESifo Working Paper Series 6199, CESifo Group Munich.
- Faria, Gonçalo & Verona, Fabio, 2018.
"Forecasting stock market returns by summing the frequency-decomposed parts,"
Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
- Gonçalo Faria & Fabio Verona, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Working Papers de Economia (Economics Working Papers) 05, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2016. "Forecasting stock market returns by summing the frequency-decomposed parts," Bank of Finland Research Discussion Papers 29/2016, Bank of Finland.
- Gonçalo Faria & Fabio Verona, 2017. "Forecasting stock market returns by summing the frequency-decomposed parts," CEF.UP Working Papers 1702, Universidade do Porto, Faculdade de Economia do Porto.
- Li, Jun & Wang, Huijun & Yu, Jianfeng, 2018. "Aggregate Expected Investment Growth and Stock Market Returns," ADBI Working Papers 808, Asian Development Bank Institute.
- Dai, Zhifeng & Kang, Jie, 2021. "Bond yield and crude oil prices predictability," Energy Economics, Elsevier, vol. 97(C).
- Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
- Arim Jin & Dahan Lee & Jong-Bae Park & Jae Hyung Roh, 2023. "Day-Ahead Electricity Market Price Forecasting Considering the Components of the Electricity Market Price; Using Demand Decomposition, Fuel Cost, and the Kernel Density Estimation," Energies, MDPI, vol. 16(7), pages 1-19, April.
- Ma, Feng & Wahab, M.I.M. & Zhang, Yaojie, 2019. "Forecasting the U.S. stock volatility: An aligned jump index from G7 stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 54(C), pages 132-146.
- Shulin Shen & Yiyi Zhao & Jindong Pang, 2024. "Local Housing Market Sentiments and Returns: Evidence from China," The Journal of Real Estate Finance and Economics, Springer, vol. 68(3), pages 488-522, April.
- Hwang, Soosung & Rubesam, Alexandre & Salmon, Mark, 2021.
"Beta herding through overconfidence: A behavioral explanation of the low-beta anomaly,"
Journal of International Money and Finance, Elsevier, vol. 111(C).
- Soosung Hwang & Alexandre Rubesam & Mark Salmon, 2021. "Beta herding through overconfidence: A behavioral explanation of the low-beta anomaly," Post-Print hal-03275894, HAL.
- Gonçalo Faria & Fabio Verona, 2016.
"Forecasting the equity risk premium with frequency-decomposed predictors,"
Working Papers de Economia (Economics Working Papers)
06, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2017. "Forecasting the equity risk premium with frequency-decomposed predictors," Bank of Finland Research Discussion Papers 1/2017, Bank of Finland.
- Gabriela ANGHELACHE & Alexandru MANOLE & Mugurel POPOVICI, 2016. "The evolution of the insurances market in Romania," Romanian Statistical Review Supplement, Romanian Statistical Review, vol. 64(11), pages 55-66, November.
- Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
- Ian Martin, 2017.
"What is the Expected Return on the Market?,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.
- Martin, Ian, 2015. "What is the Expected Return on the Market?," CEPR Discussion Papers 10715, C.E.P.R. Discussion Papers.
- Martin, Ian, 2016. "What is the expected return on the market?," LSE Research Online Documents on Economics 119013, London School of Economics and Political Science, LSE Library.
- Martin, Ian, 2017. "What is the expected return on the market?," LSE Research Online Documents on Economics 67036, London School of Economics and Political Science, LSE Library.
- Zhu, Fangfei & Luo, Xingguo & Jin, Xuejun, 2019. "Predicting the volatility of the iShares China Large-Cap ETF: What is the role of the SSE 50 ETF?," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
- Lin, Qi & Lin, Xi, 2021. "Cash conversion cycle and aggregate stock returns," Journal of Financial Markets, Elsevier, vol. 52(C).
- Lyle, Matthew R. & Wang, Charles C.Y., 2015. "The cross section of expected holding period returns and their dynamics: A present value approach," Journal of Financial Economics, Elsevier, vol. 116(3), pages 505-525.
- Cakici, Nusret & Shahzad, Syed Jawad Hussain & Będowska-Sójka, Barbara & Zaremba, Adam, 2024. "Machine learning and the cross-section of cryptocurrency returns," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Jo~ao B. Assunc{c}~ao & Pedro Afonso Fernandes, 2024. "The Surprising Robustness of Partial Least Squares," Papers 2409.05713, arXiv.org.
- Cieslak, Anna & Pang, Hao, 2020. "Common shocks in stocks and bonds," CEPR Discussion Papers 14708, C.E.P.R. Discussion Papers.
- Yuan Liao & Xinjie Ma & Andreas Neuhierl & Zhentao Shi, 2023. "Economic Forecasts Using Many Noises," Papers 2312.05593, arXiv.org, revised Dec 2023.
- Tsiakas, Ilias & Li, Jiahan & Zhang, Haibin, 2020.
"Equity premium prediction and the state of the economy,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 75-95.
- Ilias Tsiakas & Jiahan Li & Haibin Zhang, 2020. "Equity Premium Prediction and the State of the Economy," Working Paper series 20-16, Rimini Centre for Economic Analysis.
- Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
- Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014.
"Forecasting stock returns under economic constraints,"
Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
- Timmermann, Allan & Pettenuzzo, Davide & Valkanov, Rossen, 2013. "Forecasting Stock Returns under Economic Constraints," CEPR Discussion Papers 9377, C.E.P.R. Discussion Papers.
- Davide Pettenuzzo & Allan Timmermann & Rossen Valkanov, 2013. "Forecasting Stock Returns under Economic Constraints," Working Papers 57, Brandeis University, Department of Economics and International Business School.
- Zhang, Yaojie & He, Mengxi & Wen, Danyan & Wang, Yudong, 2023. "Forecasting crude oil price returns: Can nonlinearity help?," Energy, Elsevier, vol. 262(PB).
- James R. Barth & Sunghoon Joo & Hyeongwoo Kim & Kang Bok Lee & Stevan Maglic & Xuan Shen, 2020.
"Forecasting Net Charge-Off Rates of Banks: A PLS Approach,"
World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 63, pages 2265-2301,
World Scientific Publishing Co. Pte. Ltd..
- James Barth & Sunghoon Joo & Hyeongwoo Kim & Kang Bok Lee & Stevan Maglic & Xuan Shen, 2018. "Forecasting Net Charge-Off Rates of Banks: A PLS Approach," Auburn Economics Working Paper Series auwp2018-03, Department of Economics, Auburn University.
- Vigo Pereira, Caio, 2021.
"Portfolio efficiency with high-dimensional data as conditioning information,"
International Review of Financial Analysis, Elsevier, vol. 77(C).
- Caio Vigo Pereira, 2020. "Portfolio Efficiency with High-Dimensional Data as Conditioning Information," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202015, University of Kansas, Department of Economics, revised Sep 2020.
- Wang, Yudong & Liu, Li & Ma, Feng & Diao, Xundi, 2018. "Momentum of return predictability," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 141-156.
- Hai Lin & Chunchi Wu & Guofu Zhou, 2018. "Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach," Management Science, INFORMS, vol. 64(9), pages 4218-4238, September.
- Ruan, Qingsong & Wang, Zilin & Zhou, Yaping & Lv, Dayong, 2020. "A new investor sentiment indicator (ISI) based on artificial intelligence: A powerful return predictor in China," Economic Modelling, Elsevier, vol. 88(C), pages 47-58.
- Cieslak, Anna & Schrimpf, Andreas, 2019.
"Non-monetary news in central bank communication,"
Journal of International Economics, Elsevier, vol. 118(C), pages 293-315.
- Anna Cieslak & Andreas Schrimpf, 2018. "Non-Monetary News in Central Bank Communication," NBER Chapters, in: NBER International Seminar on Macroeconomics 2018, pages 293-315, National Bureau of Economic Research, Inc.
- Anna Cieslak & Andreas Schrimpf, 2018. "Non-monetary news in central bank communication," BIS Working Papers 761, Bank for International Settlements.
- Anna Cieslak & Andreas Schrimpf, 2018. "Non-Monetary News in Central Bank Communication," NBER Working Papers 25032, National Bureau of Economic Research, Inc.
- Soosung Hwang & Youngha Cho & Jinho Shin, 2020. "The impact of UK household overconfidence in public information on house prices," Journal of Property Research, Taylor & Francis Journals, vol. 37(4), pages 360-389, October.
- Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
- Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
- Mykola Babiak & Jozef Barunik, 2020.
"Deep Learning, Predictability, and Optimal Portfolio Returns,"
Papers
2009.03394, arXiv.org, revised Jul 2021.
- Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Xiaolu Wei & Hongbing Ouyang, 2023. "Forecasting Carbon Price Using Double Shrinkage Methods," IJERPH, MDPI, vol. 20(2), pages 1-20, January.
- Gonçalo Faria & Fabio Verona, 2021.
"Time-frequency forecast of the equity premium,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2119-2135, December.
- Faria, Gonçalo & Verona, Fabio, 2020. "Time-frequency forecast of the equity premium," Bank of Finland Research Discussion Papers 6/2020, Bank of Finland.
- Back, Kerry & Crotty, Kevin & Kazempour, Seyed Mohammad, 2022. "Validity, tightness, and forecasting power of risk premium bounds," Journal of Financial Economics, Elsevier, vol. 144(3), pages 732-760.
- Hao, Yijun & Su, Hao & Zhu, Xiaoneng, 2020. "Rare disaster concerns and economic fluctuations," Economics Letters, Elsevier, vol. 195(C).
- Chen, Zhanhui & Yang, Bowen, 2019. "In search of preference shock risks: Evidence from longevity risks and momentum profits," Journal of Financial Economics, Elsevier, vol. 133(1), pages 225-249.
- Gonçalo Faria & Fabio Verona, 2016.
"Forecasting the equity risk premium with frequency-decomposed predictors,"
Working Papers de Economia (Economics Working Papers)
06, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2017. "Forecasting the equity risk premium with frequency-decomposed predictors," Research Discussion Papers 1/2017, Bank of Finland.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- repec:ipg:wpaper:2013-020 is not listed on IDEAS
- He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
- Wang, Yudong & Pan, Zhiyuan & Wu, Chongfeng & Wu, Wenfeng, 2020. "Industry equi-correlation: A powerful predictor of stock returns," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 1-24.
- Lu, Fei & Ma, Feng & Feng, Lin, 2024. "Carbon dioxide emissions and economic growth: New evidence from GDP forecasting," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
- Carolin Pflueger & Emil Siriwardane & Adi Sunderam, 2019. "Financial Market Risk Perceptions and the Macroeconomy," NBER Working Papers 26290, National Bureau of Economic Research, Inc.
- Jiang, Fuwei & Liu, Hongkui & Yu, Jiasheng & Zhang, Huajing, 2023. "International stock return predictability: The role of U.S. uncertainty spillover," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
- Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
- Dai, Zhifeng & Zhu, Huan, 2021. "Indicator selection and stock return predictability," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
- Shi, Qi, 2023. "The RP-PCA factors and stock return predictability: An aligned approach," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Chen, Jian & Jiang, Fuwei & Li, Hongyi & Xu, Weidong, 2016. "Chinese stock market volatility and the role of U.S. economic variables," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 70-83.
- Gonçalo Faria & Fabio Verona, 2021.
"Time-frequency forecast of the equity premium,"
Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2119-2135, December.
- Faria, Gonçalo & Verona, Fabio, 2020. "Time-frequency forecast of the equity premium," Research Discussion Papers 6/2020, Bank of Finland.
- Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
- Busetto, Filippo, 2024. "Asymmetric expectations of monetary policy," Bank of England working papers 1058, Bank of England.
- Li Guo & Lin Peng & Yubo Tao & Jun Tu, 2017. "Joint News, Attention Spillover,and Market Returns," Papers 1703.02715, arXiv.org, revised Nov 2022.
- repec:zbw:bofrdp:2020_006 is not listed on IDEAS
- Huang, Dashan & Li, Jiangyuan & Wang, Liyao, 2021. "Are disagreements agreeable? Evidence from information aggregation," Journal of Financial Economics, Elsevier, vol. 141(1), pages 83-101.
- Teng Andrea Xu & Jiahua Xu & Kristof Lommers, 2022. "DeFi vs TradFi: Valuation Using Multiples and Discounted Cash Flow," Papers 2210.16846, arXiv.org.
- Dai, Zhifeng & Zhu, Huan, 2020. "Stock return predictability from a mixed model perspective," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
- Lan, Chunhua & Doan, Bao, 2022. "Stock price movements: Evidence from global equity markets," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 123-143.
- Cieslak, Anna & Pang, Hao, 2021. "Common shocks in stocks and bonds," Journal of Financial Economics, Elsevier, vol. 142(2), pages 880-904.
- Zhang, Zhikai & Wang, Yudong & Zhang, Yaojie & Wang, Qunwei, 2024. "Forecasting carbon prices under diversified attention: A dynamic model averaging approach with common factors," Energy Economics, Elsevier, vol. 133(C).
- Yang, Lu & Cui, Xue & Yang, Lei & Hamori, Shigeyuki & Cai, Xiaojing, 2023. "Risk spillover from international financial markets and China's macro-economy: A MIDAS-CoVaR-QR model," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 55-69.
- Zhang, Yaojie & He, Mengxi & Wang, Yudong & Liang, Chao, 2023. "Global economic policy uncertainty aligned: An informative predictor for crude oil market volatility," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1318-1332.
- Kelly Shue & Richard Townsend, 2017. "How do Quasi-Random Option Grants Affect CEO Risk-Taking?," NBER Working Papers 23091, National Bureau of Economic Research, Inc.
- Scott Cederburg & Travis L Johnson & Michael S O’Doherty, 2023. "On the Economic Significance of Stock Return Predictability," Review of Finance, European Finance Association, vol. 27(2), pages 619-657.
- Su, Hao & Ying, Chengwei & Zhu, Xiaoneng, 2022. "Disaster risk matters in the bond market," Finance Research Letters, Elsevier, vol. 47(PA).
- Xiaoji Lin & Ding Luo & Andres Donangelo & Frederico Belo, 2017. "Labor Hiring, Aggregate Dividends, and Return Predictability in the Time Series," 2017 Meeting Papers 885, Society for Economic Dynamics.
- Dominik Wolff & Ulrich Neugebauer, 2019. "Tree-based machine learning approaches for equity market predictions," Journal of Asset Management, Palgrave Macmillan, vol. 20(4), pages 273-288, July.
- Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
- Qi Liu & Libin Tao & Weixing Wu & Jianfeng Yu, 2017. "Short- and Long-Run Business Conditions and Expected Returns," Management Science, INFORMS, vol. 63(12), pages 4137-4157, December.
- Jian Chen & Jiaquan Yao & Qunzi Zhang & Xiaoneng Zhu, 2023. "Global Disaster Risk Matters," Management Science, INFORMS, vol. 69(1), pages 576-597, January.
- Efstathios Avdis & Jessica A. Wachter, 2013. "Maximum likelihood estimation of the equity premium," NBER Working Papers 19684, National Bureau of Economic Research, Inc.
- de Oliveira Souza, Thiago, 2020. "Two out-of-sample forecasting models of the equity premium," Discussion Papers on Economics 11/2020, University of Southern Denmark, Department of Economics.
- Çepni, Oğuzhan & Guney, I. Ethem & Gupta, Rangan & Wohar, Mark E., 2020. "The role of an aligned investor sentiment index in predicting bond risk premia of the U.S," Journal of Financial Markets, Elsevier, vol. 51(C).
- Stivers, Adam, 2018. "Equity premium predictions with many predictors: A risk-based explanation of the size and value factors," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 126-140.
- Gao, Lin & Süss, Stephan, 2015. "Market sentiment in commodity futures returns," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 84-103.
- Han, Liyan & Xu, Yang & Yin, Libo, 2018. "Forecasting the CNY-CNH pricing differential: The role of investor attention," Pacific-Basin Finance Journal, Elsevier, vol. 49(C), pages 232-247.
- Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2020.
"A New Index of Housing Sentiment,"
Management Science, INFORMS, vol. 66(4), pages 1563-1583, April.
- Lasse Bork & Stig V. Møller & Thomas Q. Pedersen, 2016. "A New Index of Housing Sentiment," CREATES Research Papers 2016-32, Department of Economics and Business Economics, Aarhus University.
- repec:zbw:bofrdp:2017_001 is not listed on IDEAS
- Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
- Zongwu Cai & Pixiong Chen, 2022. "New Online Investor Sentiment and Asset Returns," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202216, University of Kansas, Department of Economics, revised Nov 2022.
- Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016.
"Systemic risk and the macroeconomy: An empirical evaluation,"
Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
- Stefano Giglio & Bryan T. Kelly & Seth Pruitt, 2015. "Systemic Risk and the Macroeconomy: An Empirical Evaluation," NBER Working Papers 20963, National Bureau of Economic Research, Inc.
- Bing Han & Gang Li, 2021. "Information Content of Aggregate Implied Volatility Spread," Management Science, INFORMS, vol. 67(2), pages 1249-1269, February.
- Han, Liyan & Xu, Yang & Yin, Libo, 2018. "Does investor attention matter? The attention-return relationships in FX markets," Economic Modelling, Elsevier, vol. 68(C), pages 644-660.
- Chen, Qinhua & Chi, Yeguang & Qiao, Xiao, 2020. "Follow the smart money: Factor forecasting in China," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
- Yuan Li & Yu Zhang, 2021. "Investor Sentiment, Idiosyncratic Risk, and Stock Price Premium: Evidence From Chinese Cross-Listed Companies," SAGE Open, , vol. 11(2), pages 21582440211, June.
- Erik Christian Montes Schütte, 2018. "In Search of a Job: Forecasting Employment Growth in the US using Google Trends," CREATES Research Papers 2018-25, Department of Economics and Business Economics, Aarhus University.
- Andriy Bodnaruk & Bekhan Chokaev & Andrei Simonov, 2019.
"Downside Risk Timing by Mutual Funds,"
The Review of Asset Pricing Studies, Society for Financial Studies, vol. 9(1), pages 171-196.
- Simonov, Andrei & Bodnaruk, Andriy & Chokaev, Bekhan, 2015. "Downside Risk Timing by Mutual Funds," CEPR Discussion Papers 10639, C.E.P.R. Discussion Papers.
- Ma, Yao & Yang, Baochen & Su, Yunpeng, 2020. "Technical trading index, return predictability and idiosyncratic volatility," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 879-900.
- Tan, Xilong & Tao, Yubo, 2023. "Trend-based forecast of cryptocurrency returns," Economic Modelling, Elsevier, vol. 124(C).
- Dai, Zhifeng & Kang, Jie & Wen, Fenghua, 2021. "Predicting stock returns: A risk measurement perspective," International Review of Financial Analysis, Elsevier, vol. 74(C).
- Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
- Bagnara, Matteo, 2024. "The economic value of cross-predictability: A performance-based measure," SAFE Working Paper Series 424, Leibniz Institute for Financial Research SAFE.
- Matthew Pritsker, 2017. "Choosing Stress Scenarios for Systemic Risk Through Dimension Reduction," Supervisory Research and Analysis Working Papers RPA 17-4, Federal Reserve Bank of Boston.