Carbon dioxide emissions and economic growth: New evidence from GDP forecasting
Author
Abstract
Suggested Citation
DOI: 10.1016/j.techfore.2024.123464
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gonzalo Camba-Mendez & George Kapetanios & Richard J. Smith & Martin R. Weale, 2001.
"An automatic leading indicator of economic activity: forecasting GDP growth for European countries,"
Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-37.
- Dr Martin Weale, 1999. "An Automatic Leading Indicator of Economic Activity: Forecasting GDP Growth for European Countries," National Institute of Economic and Social Research (NIESR) Discussion Papers 149, National Institute of Economic and Social Research.
- Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
- Alberto Martin & Jaume Ventura, 2012.
"Economic Growth with Bubbles,"
American Economic Review, American Economic Association, vol. 102(6), pages 3033-3058, October.
- Alberto Martin & Jaume Ventura, 2003. "Economic growth with bubbles," Economics Working Papers 848, Department of Economics and Business, Universitat Pompeu Fabra, revised Sep 2011.
- Ventura, Jaume & MartÃn, Alberto, 2010. "Economic Growth with Bubbles," CEPR Discussion Papers 7770, C.E.P.R. Discussion Papers.
- Alberto Martin, 2010. "Economic Growth with Bubbles," 2010 Meeting Papers 788, Society for Economic Dynamics.
- Jaume Ventura & Alberto Martín, 2010. "Economic Growth with Bubbles," Working Papers 445, Barcelona School of Economics.
- Alberto Martin & Jaume Ventura, 2010. "Economic Growth with Bubbles," NBER Working Papers 15870, National Bureau of Economic Research, Inc.
- Jaume Ventura & Alberto Martín, 2003. "Economic Growth with Bubbles," Working Papers 204, Barcelona School of Economics.
- Leitão, João & Ferreira, Joaquim & Santibanez-González, Ernesto, 2022. "New insights into decoupling economic growth, technological progress and carbon dioxide emissions: Evidence from 40 countries," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
- Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
- Shahzad, Umer & Si Mohammed, Kamel & Schneider, Nicolas & Faggioni, Francesca & Papa, Armando, 2023. "GDP responses to supply chain disruptions in a post-pandemic era: Combination of DL and ANN outputs based on Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 192(C).
- Taylor, Margaret & Taylor, Andrew, 2012. "The technology life cycle: Conceptualization and managerial implications," International Journal of Production Economics, Elsevier, vol. 140(1), pages 541-553.
- Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa, 2022. "The Effects of Central Bank Digital Currencies News on Financial Markets," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022.
"Scaled PCA: A New Approach to Dimension Reduction,"
Management Science, INFORMS, vol. 68(3), pages 1678-1695, March.
- Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022. "Scaled PCA: A New Approach to Dimension Reduction," CEMA Working Papers 678, China Economics and Management Academy, Central University of Finance and Economics.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Wang, Qiang & Wang, Lili, 2020. "Renewable energy consumption and economic growth in OECD countries: A nonlinear panel data analysis," Energy, Elsevier, vol. 207(C).
- Alam, Mehnaz Binta & Hossain, Md. Shaddam, 2024. "Investigating the connections between China's economic growth, use of renewable energy, and research and development concerning CO2 emissions: An ARDL Bound Test Approach," Technological Forecasting and Social Change, Elsevier, vol. 201(C).
- Jokubaitis, Saulius & Celov, Dmitrij & Leipus, Remigijus, 2021. "Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run," International Journal of Forecasting, Elsevier, vol. 37(2), pages 759-776.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
- Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
- Lutz Kilian & Robert J. Vigfusson, 2013.
"Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
- Lutz Kilian & Robert J. Vigfusson, 2012. "Do oil prices help forecast U.S. real GDP? the role of nonlinearities and asymmetries," International Finance Discussion Papers 1050, Board of Governors of the Federal Reserve System (U.S.).
- Kilian, Lutz & Vigfusson, Robert J., 2012. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," CEPR Discussion Papers 8980, C.E.P.R. Discussion Papers.
- Barsoum, Fady & Stankiewicz, Sandra, 2015.
"Forecasting GDP growth using mixed-frequency models with switching regimes,"
International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
- Fady Barsoum & Sandra Stankiewicz, 2013. "Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes," Working Paper Series of the Department of Economics, University of Konstanz 2013-10, Department of Economics, University of Konstanz.
- Gozgor, Giray & Tiwari, Aviral Kumar & Khraief, Naceur & Shahbaz, Muhammad, 2019.
"Dependence structure between business cycles and CO2 emissions in the U.S.: Evidence from the time-varying Markov-Switching Copula models,"
Energy, Elsevier, vol. 188(C).
- Gozgor, Giray & Tiwari, Aviral & Khraief, Naceur & Shahbaz, Muhammad, 2019. "Dependence Structure between Business Cycles and CO2 Emissions in the U.S.: Evidence from the Time-Varying Markov-Switching Copula Models," MPRA Paper 95971, University Library of Munich, Germany, revised 09 Sep 2019.
- Daniel Borup & Erik Christian Montes Schütte, 2022.
"In Search of a Job: Forecasting Employment Growth Using Google Trends,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
- Daniel Borup & Erik Christian Montes Schütte, 2019. "In search of a job: Forecasting employment growth using Google Trends," CREATES Research Papers 2019-13, Department of Economics and Business Economics, Aarhus University.
- J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
- Boriss Siliverstovs, 2017.
"Short-term forecasting with mixed-frequency data: a MIDASSO approach,"
Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
- Boriss Siliverstovs, 2015. "Short-term forecasting with mixed-frequency data: A MIDASSO approach," KOF Working papers 15-375, KOF Swiss Economic Institute, ETH Zurich.
- Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Ericsson, Neil R., 2016.
"Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
- Neil R. Ericsson, 2015. "Eliciting GDP Forecasts from the FOMC’s Minutes Around the Financial Crisis," Working Papers 2015-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Neil R. Ericsson, 2015. "Eliciting GDP Forecasts from the FOMC’s Minutes Around the Financial Crisis," International Finance Discussion Papers 1152, Board of Governors of the Federal Reserve System (U.S.).
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Wen, Fenghua & Tong, Xi & Ren, Xiaohang, 2022. "Gold or Bitcoin, which is the safe haven during the COVID-19 pandemic?," International Review of Financial Analysis, Elsevier, vol. 81(C).
- Wei-Fong Pan & Xinjie Wang & Ge Wu & Weike Xu, 2021. "The COVID-19 pandemic and sovereign credit risk," China Finance Review International, Emerald Group Publishing Limited, vol. 11(3), pages 287-301, May.
- El Baz, Jamal & Ruel, Salomée, 2024. "Achieving social performance through digitalization and supply chain resilience in the COVID-19 disruption era: An empirical examination based on a stakeholder dynamic capabilities view," Technological Forecasting and Social Change, Elsevier, vol. 201(C).
- Ma, Feng & Wang, Jiqian & Wahab, M.I.M. & Ma, Yuanhui, 2023. "Stock market volatility predictability in a data-rich world: A new insight," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1804-1819.
- Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
- Lu, Fei & Ma, Feng & Hu, Shiyang, 2024. "Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting," Energy Economics, Elsevier, vol. 129(C).
- Taicir Mezghani & Mouna Boujelbène & Mariam Elbayar, 2021. "Impact of COVID‐19 pandemic on risk transmission between googling investor’s sentiment, the Chinese stock and bond markets," China Finance Review International, Emerald Group Publishing Limited, vol. 11(3), pages 322-348, July.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
- Lau, Chi Keung & Gozgor, Giray & Mahalik, Mantu Kumar & Patel, Gupteswar & Li, Jing, 2023. "Introducing a new measure of energy transition: Green quality of energy mix and its impact on CO2 emissions," Energy Economics, Elsevier, vol. 122(C).
- Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
- Kourtzidis, Stavros A. & Tzeremes, Panayiotis & Tzeremes, Nickolaos G., 2018. "Re-evaluating the energy consumption-economic growth nexus for the United States: An asymmetric threshold cointegration analysis," Energy, Elsevier, vol. 148(C), pages 537-545.
- Watanabe, Chihiro & Naveed, Kashif & Tou, Yuji & Neittaanmäki, Pekka, 2018. "Measuring GDP in the digital economy: Increasing dependence on uncaptured GDP," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 226-240.
- Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
- Modis, Theodore, 2013. "Long-term GDP forecasts and the prospects for growth," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1557-1562.
- Nouriel Roubini & Jeffrey Sachs, 1989. "Government Spending and Budget Deficits in the Industrial Economies," NBER Working Papers 2919, National Bureau of Economic Research, Inc.
- Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
- Modis, Theodore, 2013. "Long-Term GDP Forecasts and the Prospects for Growth," OSF Preprints aqcht, Center for Open Science.
- Paul M. Romer, 1990. "Capital, Labor, and Productivity," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 21(1990 Micr), pages 337-367.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu, Fei & Ma, Feng & Hu, Shiyang, 2024. "Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting," Energy Economics, Elsevier, vol. 129(C).
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Lu, Xinjie & Ma, Feng & Wang, Tianyang & Wen, Fenghua, 2023. "International stock market volatility: A data-rich environment based on oil shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 184-215.
- Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
- Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
- He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
- Chen, Jian & Jiang, Fuwei & Li, Hongyi & Xu, Weidong, 2016. "Chinese stock market volatility and the role of U.S. economic variables," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 70-83.
- Jixiang, Zhang & Feng, Ma, 2024. "Video apps user engagement and stock market volatility: Evidence from China," Finance Research Letters, Elsevier, vol. 64(C).
- Liu, Shan & Li, Ziwei, 2023. "Macroeconomic attention and oil futures volatility prediction," Finance Research Letters, Elsevier, vol. 57(C).
- Wang, Jiqian & He, Xiaofeng & Ma, Feng & Li, Pan, 2022. "Uncertainty and oil volatility: Evidence from shrinkage method," Resources Policy, Elsevier, vol. 75(C).
- Gonçalo Faria & Fabio Verona, 2016.
"Forecasting the equity risk premium with frequency-decomposed predictors,"
Working Papers de Economia (Economics Working Papers)
06, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2017. "Forecasting the equity risk premium with frequency-decomposed predictors," Bank of Finland Research Discussion Papers 1/2017, Bank of Finland.
- Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
- Lin, Qi, 2018. "Technical analysis and stock return predictability: An aligned approach," Journal of Financial Markets, Elsevier, vol. 38(C), pages 103-123.
- Hoang, Khoa & Cannavan, Damien & Huang, Ronghong & Peng, Xiaowen, 2021. "Predicting stock returns with implied cost of capital: A partial least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
- Chen, Zhonglu & Zhang, Li & Weng, Chen, 2023. "Does climate policy uncertainty affect Chinese stock market volatility?," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 369-381.
- Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
- Nonejad, Nima, 2022. "Equity premium prediction using the price of crude oil: Uncovering the nonlinear predictive impact," Energy Economics, Elsevier, vol. 115(C).
- Dai, Zhifeng & Kang, Jie & Hu, Yangli, 2021. "Efficient predictability of oil price: The role of number of IPOs and U.S. dollar index," Resources Policy, Elsevier, vol. 74(C).
- Gonçalo Faria & Fabio Verona, 2016.
"Forecasting the equity risk premium with frequency-decomposed predictors,"
Working Papers de Economia (Economics Working Papers)
06, Católica Porto Business School, Universidade Católica Portuguesa.
- Faria, Gonçalo & Verona, Fabio, 2017. "Forecasting the equity risk premium with frequency-decomposed predictors," Research Discussion Papers 1/2017, Bank of Finland.
More about this item
Keywords
Carbon emission index; Energy-consuming sectors; Incremental information; Business cycle; COVID-19 pandemic;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:205:y:2024:i:c:s0040162524002609. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.