IDEAS home Printed from https://ideas.repec.org/a/eee/tefoso/v205y2024ics0040162524002609.html
   My bibliography  Save this article

Carbon dioxide emissions and economic growth: New evidence from GDP forecasting

Author

Listed:
  • Lu, Fei
  • Ma, Feng
  • Feng, Lin

Abstract

This study aims to construct a monthly carbon emission index based on energy combustion in order to investigate its predictive power for the real GDP growth rate in the United States. Our objective is to evaluate and quantify the predictive performance and the potential impact of carbon-related factors on the GDP growth rate. We define the carbon emission index as the change rate index of monthly carbon dioxide emissions after accounting for seasonal effects, encompassing five sectors of energy consumption (residential, commercial, industrial, transportation, and electric power). Our findings demonstrate the robust and exceptional predictive capability of the newly developed carbon emission indices for GDP growth rates, particularly in relation to the transportation and industrial sectors. Moreover, in addition to popular macroeconomic variables, the carbon emission index contains incremental predictive information. The results obtained under diverse business cycle conditions and during the COVID-19 Pandemic further underscore the significance of our study. The findings of this paper provide more concise and efficient predictors for GDP growth rate forecasts.

Suggested Citation

  • Lu, Fei & Ma, Feng & Feng, Lin, 2024. "Carbon dioxide emissions and economic growth: New evidence from GDP forecasting," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:tefoso:v:205:y:2024:i:c:s0040162524002609
    DOI: 10.1016/j.techfore.2024.123464
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040162524002609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.techfore.2024.123464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gonzalo Camba-Mendez & George Kapetanios & Richard J. Smith & Martin R. Weale, 2001. "An automatic leading indicator of economic activity: forecasting GDP growth for European countries," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-37.
    2. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    3. Alberto Martin & Jaume Ventura, 2012. "Economic Growth with Bubbles," American Economic Review, American Economic Association, vol. 102(6), pages 3033-3058, October.
    4. Taicir Mezghani & Mouna Boujelbène & Mariam Elbayar, 2021. "Impact of COVID‐19 pandemic on risk transmission between googling investor’s sentiment, the Chinese stock and bond markets," China Finance Review International, Emerald Group Publishing Limited, vol. 11(3), pages 322-348, July.
    5. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    6. Leitão, João & Ferreira, Joaquim & Santibanez-González, Ernesto, 2022. "New insights into decoupling economic growth, technological progress and carbon dioxide emissions: Evidence from 40 countries," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    7. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
    8. Pan, Zhiyuan & Wang, Qing & Wang, Yudong & Yang, Li, 2018. "Forecasting U.S. real GDP using oil prices: A time-varying parameter MIDAS model," Energy Economics, Elsevier, vol. 72(C), pages 177-187.
    9. Shahzad, Umer & Si Mohammed, Kamel & Schneider, Nicolas & Faggioni, Francesca & Papa, Armando, 2023. "GDP responses to supply chain disruptions in a post-pandemic era: Combination of DL and ANN outputs based on Google Trends," Technological Forecasting and Social Change, Elsevier, vol. 192(C).
    10. Lau, Chi Keung & Gozgor, Giray & Mahalik, Mantu Kumar & Patel, Gupteswar & Li, Jing, 2023. "Introducing a new measure of energy transition: Green quality of energy mix and its impact on CO2 emissions," Energy Economics, Elsevier, vol. 122(C).
    11. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    12. Gozgor, Giray & Tiwari, Aviral Kumar & Khraief, Naceur & Shahbaz, Muhammad, 2019. "Dependence structure between business cycles and CO2 emissions in the U.S.: Evidence from the time-varying Markov-Switching Copula models," Energy, Elsevier, vol. 188(C).
    13. Taylor, Margaret & Taylor, Andrew, 2012. "The technology life cycle: Conceptualization and managerial implications," International Journal of Production Economics, Elsevier, vol. 140(1), pages 541-553.
    14. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    15. Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa, 2022. "The Effects of Central Bank Digital Currencies News on Financial Markets," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    16. Dashan Huang & Fuwei Jiang & Kunpeng Li & Guoshi Tong & Guofu Zhou, 2022. "Scaled PCA: A New Approach to Dimension Reduction," Management Science, INFORMS, vol. 68(3), pages 1678-1695, March.
    17. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    18. Wang, Qiang & Wang, Lili, 2020. "Renewable energy consumption and economic growth in OECD countries: A nonlinear panel data analysis," Energy, Elsevier, vol. 207(C).
    19. Alam, Mehnaz Binta & Hossain, Md. Shaddam, 2024. "Investigating the connections between China's economic growth, use of renewable energy, and research and development concerning CO2 emissions: An ARDL Bound Test Approach," Technological Forecasting and Social Change, Elsevier, vol. 201(C).
    20. Jokubaitis, Saulius & Celov, Dmitrij & Leipus, Remigijus, 2021. "Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run," International Journal of Forecasting, Elsevier, vol. 37(2), pages 759-776.
    21. Kourtzidis, Stavros A. & Tzeremes, Panayiotis & Tzeremes, Nickolaos G., 2018. "Re-evaluating the energy consumption-economic growth nexus for the United States: An asymmetric threshold cointegration analysis," Energy, Elsevier, vol. 148(C), pages 537-545.
    22. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    23. Boriss Siliverstovs, 2017. "Short-term forecasting with mixed-frequency data: a MIDASSO approach," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
    24. Barsoum, Fady & Stankiewicz, Sandra, 2015. "Forecasting GDP growth using mixed-frequency models with switching regimes," International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
    25. Bryan Kelly & Seth Pruitt, 2013. "Market Expectations in the Cross-Section of Present Values," Journal of Finance, American Finance Association, vol. 68(5), pages 1721-1756, October.
    26. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    27. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    28. Watanabe, Chihiro & Naveed, Kashif & Tou, Yuji & Neittaanmäki, Pekka, 2018. "Measuring GDP in the digital economy: Increasing dependence on uncaptured GDP," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 226-240.
    29. Schumacher, Christian & Breitung, Jörg, 2008. "Real-time forecasting of German GDP based on a large factor model with monthly and quarterly data," International Journal of Forecasting, Elsevier, vol. 24(3), pages 386-398.
    30. Modis, Theodore, 2013. "Long-term GDP forecasts and the prospects for growth," Technological Forecasting and Social Change, Elsevier, vol. 80(8), pages 1557-1562.
    31. Daniel Borup & Erik Christian Montes Schütte, 2022. "In Search of a Job: Forecasting Employment Growth Using Google Trends," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 186-200, January.
    32. J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
    33. Lu, Fei & Ma, Feng & Guo, Qiang, 2023. "Less is more? New evidence from stock market volatility predictability," International Review of Financial Analysis, Elsevier, vol. 89(C).
    34. Nouriel Roubini & Jeffrey Sachs, 1989. "Government Spending and Budget Deficits in the Industrial Economies," NBER Working Papers 2919, National Bureau of Economic Research, Inc.
    35. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    36. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    37. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    38. Modis, Theodore, 2013. "Long-Term GDP Forecasts and the Prospects for Growth," OSF Preprints aqcht, Center for Open Science.
    39. Wen, Fenghua & Tong, Xi & Ren, Xiaohang, 2022. "Gold or Bitcoin, which is the safe haven during the COVID-19 pandemic?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    40. repec:eme:cfripp:cfri-01-2021-0010 is not listed on IDEAS
    41. El Baz, Jamal & Ruel, Salomée, 2024. "Achieving social performance through digitalization and supply chain resilience in the COVID-19 disruption era: An empirical examination based on a stakeholder dynamic capabilities view," Technological Forecasting and Social Change, Elsevier, vol. 201(C).
    42. Ma, Feng & Wang, Jiqian & Wahab, M.I.M. & Ma, Yuanhui, 2023. "Stock market volatility predictability in a data-rich world: A new insight," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1804-1819.
    43. Paul M. Romer, 1990. "Capital, Labor, and Productivity," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 21(1990 Micr), pages 337-367.
    44. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    45. Lu, Fei & Ma, Feng & Hu, Shiyang, 2024. "Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting," Energy Economics, Elsevier, vol. 129(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Fei & Ma, Feng & Hu, Shiyang, 2024. "Does energy consumption play a key role? Re-evaluating the energy consumption-economic growth nexus from GDP growth rates forecasting," Energy Economics, Elsevier, vol. 129(C).
    2. Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
    3. Lu, Xinjie & Ma, Feng & Wang, Tianyang & Wen, Fenghua, 2023. "International stock market volatility: A data-rich environment based on oil shocks," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 184-215.
    4. Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
    5. Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
    6. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. He, Mengxi & Zhang, Yaojie & Wen, Danyan & Wang, Yudong, 2021. "Forecasting crude oil prices: A scaled PCA approach," Energy Economics, Elsevier, vol. 97(C).
    8. Chen, Jian & Jiang, Fuwei & Li, Hongyi & Xu, Weidong, 2016. "Chinese stock market volatility and the role of U.S. economic variables," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 70-83.
    9. Jixiang, Zhang & Feng, Ma, 2024. "Video apps user engagement and stock market volatility: Evidence from China," Finance Research Letters, Elsevier, vol. 64(C).
    10. Liu, Shan & Li, Ziwei, 2023. "Macroeconomic attention and oil futures volatility prediction," Finance Research Letters, Elsevier, vol. 57(C).
    11. Wang, Jiqian & He, Xiaofeng & Ma, Feng & Li, Pan, 2022. "Uncertainty and oil volatility: Evidence from shrinkage method," Resources Policy, Elsevier, vol. 75(C).
    12. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.
    13. Nima Nonejad, 2021. "Bayesian model averaging and the conditional volatility process: an application to predicting aggregate equity returns by conditioning on economic variables," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1387-1411, August.
    14. Lin, Qi, 2018. "Technical analysis and stock return predictability: An aligned approach," Journal of Financial Markets, Elsevier, vol. 38(C), pages 103-123.
    15. Hoang, Khoa & Cannavan, Damien & Huang, Ronghong & Peng, Xiaowen, 2021. "Predicting stock returns with implied cost of capital: A partial least squares approach," Journal of Financial Markets, Elsevier, vol. 53(C).
    16. Chen, Zhonglu & Zhang, Li & Weng, Chen, 2023. "Does climate policy uncertainty affect Chinese stock market volatility?," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 369-381.
    17. Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
    18. Nonejad, Nima, 2022. "Equity premium prediction using the price of crude oil: Uncovering the nonlinear predictive impact," Energy Economics, Elsevier, vol. 115(C).
    19. Dai, Zhifeng & Kang, Jie & Hu, Yangli, 2021. "Efficient predictability of oil price: The role of number of IPOs and U.S. dollar index," Resources Policy, Elsevier, vol. 74(C).
    20. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:tefoso:v:205:y:2024:i:c:s0040162524002609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.sciencedirect.com/science/journal/00401625 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.