My bibliography
Save this item
Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Zhexiao Lin & Peng Ding & Fang Han, 2023. "Estimation Based on Nearest Neighbor Matching: From Density Ratio to Average Treatment Effect," Econometrica, Econometric Society, vol. 91(6), pages 2187-2217, November.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021.
"A unified framework for efficient estimation of general treatment models,"
Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2018. "A Unified Framework for Efficient Estimation of General Treatment Models," Papers 1808.04936, arXiv.org, revised Aug 2018.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," CeMMAP working papers CWP64/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ai, C. & Linton, O. & Motegi, K. & Zhang, Z., 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," Cambridge Working Papers in Economics 1934, Faculty of Economics, University of Cambridge.
- Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
- Yiyan Huang & Cheuk Hang Leung & Siyi Wang & Yijun Li & Qi Wu, 2024. "Unveiling the Potential of Robustness in Selecting Conditional Average Treatment Effect Estimators," Papers 2402.18392, arXiv.org, revised Oct 2024.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022.
"Locally Robust Semiparametric Estimation,"
Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers CWP31/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org, revised Aug 2020.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2018. "Locally robust semiparametric estimation," CeMMAP working papers CWP30/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers 31/16, Institute for Fiscal Studies.
- Sasaki, Yuya & Ura, Takuya, 2023. "Estimation and inference for policy relevant treatment effects," Journal of Econometrics, Elsevier, vol. 234(2), pages 394-450.
- Delprato, Marcos & Frola, Alessia & Antequera, Germán, 2022. "Indigenous and non-Indigenous proficiency gaps for out-of-school and in-school populations: A machine learning approach," International Journal of Educational Development, Elsevier, vol. 93(C).
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Zhong, Wei & Gao, Yang & Zhou, Wei & Fan, Qingliang, 2021. "Endogenous treatment effect estimation using high-dimensional instruments and double selection," Statistics & Probability Letters, Elsevier, vol. 169(C).
- Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018.
"Inference in Linear Regression Models with Many Covariates and Heteroscedasticity,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
- Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2015. "Inference in Linear Regression Models with Many Covariates and Heteroskedasticity," Papers 1507.02493, arXiv.org, revised Jan 2017.
- Matias Cattaneo & Michael Jansson & Whitney K. Newey, 2017. "Inference in linear regression models with many covariates and heteroskedasticity," CeMMAP working papers 03/17, Institute for Fiscal Studies.
- Cattaneo, Matias D & Jansson, Michael & Newey, Whitney K, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Department of Economics, Working Paper Series qt6rp7p9gs, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Matias Cattaneo & Michael Jansson & Whitney K. Newey, 2017. "Inference in linear regression models with many covariates and heteroskedasticity," CeMMAP working papers CWP03/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019.
"Two-Step Estimation and Inference with Possibly Many Included Covariates,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
- Matias D. Cattaneo & Michael Jansson & Xinwei Ma, 2018. "Two-Step Estimation and Inference with Possibly Many Included Covariates," Papers 1807.10100, arXiv.org.
- Cattaneo, Matias D & Jansson, Michael & Ma, Xinwei, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," University of California at San Diego, Economics Working Paper Series qt86c7x315, Department of Economics, UC San Diego.
- Cattaneo, Matias D & Jansson, Michael & Ma, Xinwei, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," Department of Economics, Working Paper Series qt86c7x315, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Dmitry Arkhangelsky & Guido Imbens, 2018. "Fixed Effects and the Generalized Mundlak Estimator," Papers 1807.02099, arXiv.org, revised Aug 2023.
- Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
- Richard Kwasi Bannor & Yaw Gyekye, 2022. "Unpacking The Nexus Between Broiler Contract Farming and Its Impact in Ghana," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(6), pages 2759-2786, December.
- Babii, Andrii & Ball, Ryan T. & Ghysels, Eric & Striaukas, Jonas, 2023.
"Machine learning panel data regressions with heavy-tailed dependent data: Theory and application,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Andrii Babii & Ryan T. Ball & Eric Ghysels & Jonas Striaukas, 2020. "Machine Learning Panel Data Regressions with Heavy-tailed Dependent Data: Theory and Application," Papers 2008.03600, arXiv.org, revised Nov 2021.
- Marianne Bl'ehaut & Xavier D'Haultfoeuille & J'er'emy L'Hour & Alexandre B. Tsybakov, 2020.
"An alternative to synthetic control for models with many covariates under sparsity,"
Papers
2005.12225, arXiv.org, revised Jun 2021.
- Marianne BLÉHAUT & Xavier D'HAULTFOEUILLE & Jérémy L'HOUR & Alexandre B. TSYBAKOV, 2020. "An alternative to synthetic control for models with many covariates under sparsity," Working Papers 2020-17, Center for Research in Economics and Statistics.
- Abdul-Nasah Soale & Emmanuel Selorm Tsyawo, 2023. "Clustered Covariate Regression," Papers 2302.09255, arXiv.org, revised Jul 2023.
- Yiyan Huang & Cheuk Hang Leung & Xing Yan & Qi Wu & Nanbo Peng & Dongdong Wang & Zhixiang Huang, 2020. "The Causal Learning of Retail Delinquency," Papers 2012.09448, arXiv.org.
- Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
- Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023.
"Offline Multi-Action Policy Learning: Generalization and Optimization,"
Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
- Zhou, Zhengyuan & Athey, Susan & Wager, Stefan, 2018. "Offline Multi-Action Policy Learning: Generalization and Optimization," Research Papers 3734, Stanford University, Graduate School of Business.
- Zhengyuan Zhou & Susan Athey & Stefan Wager, 2018. "Offline Multi-Action Policy Learning: Generalization and Optimization," Papers 1810.04778, arXiv.org, revised Nov 2018.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Caner, Mehmet, 2023.
"Generalized linear models with structured sparsity estimators,"
Journal of Econometrics, Elsevier, vol. 236(2).
- Mehmet Caner, 2021. "Generalized Linear Models with Structured Sparsity Estimators," Papers 2104.14371, arXiv.org.
- Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
- Martin Huber, 2019.
"An introduction to flexible methods for policy evaluation,"
Papers
1910.00641, arXiv.org.
- Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Kitagawa, Toru & Muris, Chris, 2016.
"Model averaging in semiparametric estimation of treatment effects,"
Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
- Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 46/15, Institute for Fiscal Studies.
- Toru Kitagawa & Chris Muris, 2015. "Model averaging in semiparametric estimation of treatment effects," CeMMAP working papers CWP46/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Oliver Dukes & Torben Martinussen & Eric J. Tchetgen Tchetgen & Stijn Vansteelandt, 2019. "On doubly robust estimation of the hazard difference," Biometrics, The International Biometric Society, vol. 75(1), pages 100-109, March.
- A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017.
"Program Evaluation and Causal Inference With High‐Dimensional Data,"
Econometrica, Econometric Society, vol. 85, pages 233-298, January.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fern'andez-Val & Christian Hansen, 2013. "Program Evaluation and Causal Inference with High-Dimensional Data," Papers 1311.2645, arXiv.org, revised Jan 2018.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers 13/16, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers CWP13/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
- Tauchmann, Harald & Simankova, Irina & Bünnings, Christian, 2023. "Health Shocks and Health Behavior: A Long-Term Perspective," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277581, Verein für Socialpolitik / German Economic Association.
- Denis Fougère & Nicolas Jacquemet, 2020.
"Policy Evaluation Using Causal Inference Methods,"
SciencePo Working papers Main
hal-03455978, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," PSE-Ecole d'économie de Paris (Postprint) hal-03098058, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03098058, HAL.
- Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," Post-Print hal-03098058, HAL.
- Fougère, Denis & Jacquemet, Nicolas, 2020. "Policy Evaluation Using Causal Inference Methods," IZA Discussion Papers 12922, Institute of Labor Economics (IZA).
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03098058, HAL.
- Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03455978, HAL.
- Richard Kwasi Bannor & Helena Oppong-Kyeremeh & Bismark Amfo & Lesley Hope & Samuel Kwabena Chaa Kyire, 2022. "The Nexus Between Cocoa Farmers’ Business Schools Participation and Impact to Support Livelihood Improvement Strategies in Ghana," SAGE Open, , vol. 12(2), pages 21582440221, June.
- Yike Wang & Chris Gu & Taisuke Otsu, 2024. "Graph Neural Networks: Theory for Estimation with Application on Network Heterogeneity," Papers 2401.16275, arXiv.org.
- Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
- Adeyemo, T. & Okoruwa, V. & Akinyosoye, V., 2018. "Estimating causal effects of cassava based value-webs on smallholders welfare: a multivalued treatment approach," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277052, International Association of Agricultural Economists.
- Bilancini, Ennio & Boncinelli, Leonardo & Di Paolo, Roberto & Menicagli, Dario & Pizziol, Veronica & Ricciardi, Emiliano & Serti, Francesco, 2022. "Prosocial behavior in emergencies: Evidence from blood donors recruitment and retention during the COVID-19 pandemic," Social Science & Medicine, Elsevier, vol. 314(C).
- Heigle, Julia & Pfeiffer, Friedhelm, 2019. "An analysis of selected labor market outcomes of college dropouts in Germany: A machine learning estimation approach. Research report," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 222378, June.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016.
"Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk,"
Papers
1607.00286, arXiv.org, revised Oct 2019.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers 54/17, Institute for Fiscal Studies.
- Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2017. "Quantile graphical models: prediction and conditional independence with applications to systemic risk," CeMMAP working papers CWP54/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Aristide Houndetoungan & Abdoul Haki Maoude, 2024. "Inference for Two-Stage Extremum Estimators," Papers 2402.05030, arXiv.org, revised Nov 2024.
- Jelena Bradic & Stefan Wager & Yinchu Zhu, 2019. "Sparsity Double Robust Inference of Average Treatment Effects," Papers 1905.00744, arXiv.org.
- Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024.
"Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations,"
Journal of Econometrics, Elsevier, vol. 240(2).
- Susan Athey & Guido Imbens & Jonas Metzger & Evan Munro, 2019. "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," Papers 1909.02210, arXiv.org, revised Jul 2020.
- Susan Athey & Guido W. Imbens & Jonas Metzger & Evan M. Munro, 2019. "Using Wasserstein Generative Adversarial Networks for the Design of Monte Carlo Simulations," NBER Working Papers 26566, National Bureau of Economic Research, Inc.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022.
"Unconditional quantile regression with high‐dimensional data,"
Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
- Yuya Sasaki & Takuya Ura & Yichong Zhang, 2020. "Unconditional Quantile Regression with High Dimensional Data," Papers 2007.13659, arXiv.org, revised Feb 2022.
- Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
- D’Amour, Alexander & Ding, Peng & Feller, Avi & Lei, Lihua & Sekhon, Jasjeet, 2021. "Overlap in observational studies with high-dimensional covariates," Journal of Econometrics, Elsevier, vol. 221(2), pages 644-654.
- Jiaming Mao & Jingzhi Xu, 2020. "Ensemble Learning with Statistical and Structural Models," Papers 2006.05308, arXiv.org.
- Phillip Heiler & Michael C. Knaus, 2021.
"Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments,"
Papers
2110.01427, arXiv.org, revised Aug 2023.
- Heiler, Phillip & Knaus, Michael C., 2022. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," IZA Discussion Papers 15580, Institute of Labor Economics (IZA).
- Christian Hansen & Damian Kozbur & Sanjog Misra, 2016. "Targeted undersmoothing," ECON - Working Papers 282, Department of Economics - University of Zurich, revised Apr 2018.
- Lee, Ying-Ying, 2018. "Efficient propensity score regression estimators of multivalued treatment effects for the treated," Journal of Econometrics, Elsevier, vol. 204(2), pages 207-222.
- Haruki Kono, 2023. "Semiparametric Efficiency Gains From Parametric Restrictions on Propensity Scores," Papers 2306.04177, arXiv.org, revised Jul 2024.
- Guido W. Imbens & Davide Viviano, 2023. "Identification and Inference for Synthetic Controls with Confounding," Papers 2312.00955, arXiv.org.
- Jeffrey Smith, 2022.
"Treatment Effect Heterogeneity,"
Evaluation Review, , vol. 46(5), pages 652-677, October.
- Smith, Jeffrey A., 2022. "Treatment Effect Heterogeneity," IZA Discussion Papers 15151, Institute of Labor Economics (IZA).
- Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
- Yuqian Zhang & Weijie Ji & Jelena Bradic, 2021. "Dynamic treatment effects: high-dimensional inference under model misspecification," Papers 2111.06818, arXiv.org, revised Jun 2023.
- Yiyan Huang & Cheuk Hang Leung & Xing Yan & Qi Wu & Shumin Ma & Zhiri Yuan & Dongdong Wang & Zhixiang Huang, 2022. "Robust Causal Learning for the Estimation of Average Treatment Effects," Papers 2209.01805, arXiv.org.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Qiu, Chen & Otsu, Taisuke, 2022. "Information theoretic approach to high dimensional multiplicative models: stochastic discount factor and treatment effect," LSE Research Online Documents on Economics 110494, London School of Economics and Political Science, LSE Library.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
- Fei Wang & Yuhao Deng, 2023. "Non-Asymptotic Bounds of AIPW Estimators for Means with Missingness at Random," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
- Aristide Houndetoungan & Abdoul Haki Maoude, 2024. "Inference for Two-Stage Extremum Estimators," THEMA Working Papers 2024-01, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019.
"Non-separable models with high-dimensional data,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2017. "Non-separable Models with High-dimensional Data," Economics and Statistics Working Papers 15-2017, Singapore Management University, School of Economics.
- Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
- Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2024. "Reprint: Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 239(2).
- Johann Pfitzinger, 2021. "An Interpretable Neural Network for Parameter Inference," Papers 2106.05536, arXiv.org.
- Su, Miaomiao & Wang, Qihua, 2022. "A convex programming solution based debiased estimator for quantile with missing response and high-dimensional covariables," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Chen Qiu & Taisuke Otsu, 2022. "Information theoretic approach to high‐dimensional multiplicative models: Stochastic discount factor and treatment effect," Quantitative Economics, Econometric Society, vol. 13(1), pages 63-94, January.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022.
"Automatic Debiased Machine Learning of Causal and Structural Effects,"
Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2018. "Automatic Debiased Machine Learning of Causal and Structural Effects," Papers 1809.05224, arXiv.org, revised Oct 2022.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Michael Zimmert, 2018. "The Finite Sample Performance of Treatment Effects Estimators based on the Lasso," Papers 1805.05067, arXiv.org.
- Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
- Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2020. "Neural Network Models for Empirical Finance," JRFM, MDPI, vol. 13(11), pages 1-22, October.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021.
"Deep Neural Networks for Estimation and Inference,"
Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2018. "Deep Neural Networks for Estimation and Inference," Papers 1809.09953, arXiv.org, revised Sep 2019.
- Wei, Waverly & Zhou, Yuqing & Zheng, Zeyu & Wang, Jingshen, 2024. "Inference on the best policies with many covariates," Journal of Econometrics, Elsevier, vol. 239(2).
- Harold D Chiang & Yukun Ma & Joel Rodrigue & Yuya Sasaki, 2021. "Dyadic double/debiased machine learning for analyzing determinants of free trade agreements," Papers 2110.04365, arXiv.org, revised Dec 2022.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Harsh Parikh & Marco Morucci & Vittorio Orlandi & Sudeepa Roy & Cynthia Rudin & Alexander Volfovsky, 2023. "A Double Machine Learning Approach to Combining Experimental and Observational Data," Papers 2307.01449, arXiv.org, revised Apr 2024.
- Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).
- Kuanhao Jiang & Rajarshi Mukherjee & Subhabrata Sen & Pragya Sur, 2022. "A New Central Limit Theorem for the Augmented IPW Estimator: Variance Inflation, Cross-Fit Covariance and Beyond," Papers 2205.10198, arXiv.org, revised Oct 2022.
- Vazquez-Bare, Gonzalo, 2023. "Identification and estimation of spillover effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 237(1).
- Simon Calmar Andersen & Louise Beuchert & Phillip Heiler & Helena Skyt Nielsen, 2023. "A Guide to Impact Evaluation under Sample Selection and Missing Data: Teacher's Aides and Adolescent Mental Health," Papers 2308.04963, arXiv.org.
- David Cheng & Abhishek Chakrabortty & Ashwin N. Ananthakrishnan & Tianxi Cai, 2020. "Estimating average treatment effects with a double‐index propensity score," Biometrics, The International Biometric Society, vol. 76(3), pages 767-777, September.
- Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2022. "Inference on Strongly Identified Functionals of Weakly Identified Functions," Papers 2208.08291, arXiv.org, revised Jun 2023.
- Heigle, Julia & Pfeiffer, Friedhelm, 2020. "Langfristige Wirkungen eines nicht abgeschlossenen Studiums auf individuelle Arbeitsmarktergebnisse und die allgemeine Lebenszufriedenheit," ZEW Discussion Papers 20-004, ZEW - Leibniz Centre for European Economic Research.
- Joseph Antonelli & Georgia Papadogeorgou & Francesca Dominici, 2022. "Causal inference in high dimensions: A marriage between Bayesian modeling and good frequentist properties," Biometrics, The International Biometric Society, vol. 78(1), pages 100-114, March.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022.
"Semiparametric Single-Index Estimation for Average Treatment Effects,"
Papers
2206.08503, arXiv.org, revised Apr 2024.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Monash Econometrics and Business Statistics Working Papers 10/22, Monash University, Department of Econometrics and Business Statistics.
- Xinwei Ma & Jingshen Wang, 2018. "Robust Inference Using Inverse Probability Weighting," Papers 1810.11397, arXiv.org, revised May 2019.
- Elek, Péter & Bíró, Anikó, 2021. "Regional differences in diabetes across Europe – regression and causal forest analyses," Economics & Human Biology, Elsevier, vol. 40(C).
- Mullally, Conner & Chakravarty, Shourish, 2018.
"Are matching funds for smallholder irrigation money well spent?,"
Food Policy, Elsevier, vol. 76(C), pages 70-80.
- Mullally, Conner & Chakravarty, Shourish, 2018. "Are Matching Funds for Smallholder Irrigation Money Well Spent?," SocArXiv x5vmz, Center for Open Science.
- Aur'elien Sallin, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Papers 2110.08807, arXiv.org, revised Feb 2022.
- Dingke Tang & Dehan Kong & Wenliang Pan & Linbo Wang, 2023. "Ultra‐high dimensional variable selection for doubly robust causal inference," Biometrics, The International Biometric Society, vol. 79(2), pages 903-914, June.
- Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2022.
"Estimation of Conditional Average Treatment Effects With High-Dimensional Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 313-327, January.
- Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2019. "Estimation of Conditional Average Treatment Effects with High-Dimensional Data," Papers 1908.02399, arXiv.org, revised Jul 2021.
- Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Aug 2024.
- Pengzhou Wu & Kenji Fukumizu, 2021. "$\beta$-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap," Papers 2110.05225, arXiv.org.
- Wonder Agbenyo & Yuansheng Jiang & Xinxin Jia & Jingyi Wang & Gideon Ntim-Amo & Rahman Dunya & Anthony Siaw & Isaac Asare & Martinson Ankrah Twumasi, 2022. "Does the Adoption of Climate-Smart Agricultural Practices Impact Farmers’ Income? Evidence from Ghana," IJERPH, MDPI, vol. 19(7), pages 1-25, March.
- Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
- Riccardo D'Adamo, 2021. "Orthogonal Policy Learning Under Ambiguity," Papers 2111.10904, arXiv.org, revised Dec 2022.
- Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
- Davide Viviano & Jelena Bradic, 2020. "Fair Policy Targeting," Papers 2005.12395, arXiv.org, revised Jun 2022.
- Kevin P. Josey & Elizabeth Juarez‐Colunga & Fan Yang & Debashis Ghosh, 2021. "A framework for covariate balance using Bregman distances," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 790-816, September.
- McNamara, Sarah, 2020. "Returns to higher education and dropouts: A double machine learning approach," ZEW Discussion Papers 20-084, ZEW - Leibniz Centre for European Economic Research.
- Stojčić, Nebojša & Dabić, Marina & Kraus, Sascha, 2024. "Customisation and co-creation revisited: Do user types and engagement strategies matter for product innovation success?," Technovation, Elsevier, vol. 134(C).
- Tan, Zhiqiang, 2019. "On doubly robust estimation for logistic partially linear models," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
- Sandro Heiniger, 2024. "Data-driven model selection within the matrix completion method for causal panel data models," Papers 2402.01069, arXiv.org.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2020. "Deep Learning for Individual Heterogeneity: An Automatic Inference Framework," Papers 2010.14694, arXiv.org, revised Jul 2021.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Martin Wiegand, 2019. "Do early-ending conditional cash transfer programs crowd out school enrollment?," Tinbergen Institute Discussion Papers 19-053/V, Tinbergen Institute.
- Joseph Antonelli & Matthew Cefalu & Nathan Palmer & Denis Agniel, 2018. "Doubly robust matching estimators for high dimensional confounding adjustment," Biometrics, The International Biometric Society, vol. 74(4), pages 1171-1179, December.
- Phillip Heiler, 2022. "Heterogeneous Treatment Effect Bounds under Sample Selection with an Application to the Effects of Social Media on Political Polarization," Papers 2209.04329, arXiv.org, revised Jul 2024.
- Oliver Dukes & Vahe Avagyan & Stijn Vansteelandt, 2020. "Doubly robust tests of exposure effects under high‐dimensional confounding," Biometrics, The International Biometric Society, vol. 76(4), pages 1190-1200, December.
- Michael P. Leung & Pantelis Loupos, 2022. "Graph Neural Networks for Causal Inference Under Network Confounding," Papers 2211.07823, arXiv.org, revised Mar 2024.
- Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Oct 2024.
- Heejun Shin & Joseph Antonelli, 2023. "Improved inference for doubly robust estimators of heterogeneous treatment effects," Biometrics, The International Biometric Society, vol. 79(4), pages 3140-3152, December.
- Dongcheng Zhang & Kunpeng Zhang, 2020. "Weighting-Based Treatment Effect Estimation via Distribution Learning," Papers 2012.13805, arXiv.org, revised May 2023.
- Harsh Parikh & Cynthia Rudin & Alexander Volfovsky, 2018. "MALTS: Matching After Learning to Stretch," Papers 1811.07415, arXiv.org, revised Jun 2023.