IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v235y2023i1p166-179.html
   My bibliography  Save this article

Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic

Author

Listed:
  • Guo, Xu
  • Li, Runze
  • Liu, Jingyuan
  • Zeng, Mudong

Abstract

Mediation analysis draws increasing attention in many research areas such as economics, finance and social sciences. In this paper, we propose new statistical inference procedures for high dimensional mediation models, in which both the outcome model and the mediator model are linear with high dimensional mediators. Traditional procedures for mediation analysis cannot be used to make statistical inference for high dimensional linear mediation models due to high-dimensionality of the mediators. We propose an estimation procedure for the indirect effects of the models via a partially penalized least squares method, and further establish its theoretical properties. We further develop a partially penalized Wald test on the indirect effects, and prove that the proposed test has a χ2 limiting null distribution. We also propose an F-type test for direct effects and show that the proposed test asymptotically follows a χ2-distribution under null hypothesis and a noncentral χ2-distribution under local alternatives. Monte Carlo simulations are conducted to examine the finite sample performance of the proposed tests and compare their performance with existing ones. We further apply the newly proposed statistical inference procedures to study stock reaction to COVID-19 pandemic via an empirical analysis of studying the mediation effects of financial metrics that bridge company’s sector and stock return.

Suggested Citation

  • Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
  • Handle: RePEc:eee:econom:v:235:y:2023:i:1:p:166-179
    DOI: 10.1016/j.jeconom.2022.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622000598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hassan, Tarek & Hollander, Stephan & van Lent, Laurence & Schwedeler, Markus & Tahoun, Ahmed, 2020. "Firm-Level Exposure to Epidemic Diseases: Covid-19, SARS, and H1N1," CEPR Discussion Papers 14573, C.E.P.R. Discussion Papers.
    2. Gabriella Conti & James J. Heckman & Rodrigo Pinto, 2016. "The Effects of Two Influential Early Childhood Interventions on Health and Healthy Behaviour," Economic Journal, Royal Economic Society, vol. 126(596), pages 28-65, October.
    3. Markus Frölich & Martin Huber, 2017. "Direct and indirect treatment effects–causal chains and mediation analysis with instrumental variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1645-1666, November.
    4. James J. Heckman & Rodrigo Pinto, 2015. "Econometric Mediation Analyses: Identifying the Sources of Treatment Effects from Experimentally Estimated Production Technologies with Unmeasured and Mismeasured Inputs," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 6-31, February.
    5. Muhammad Nauman Khan & Imran Khokhar, 2015. "The Effect of Selected Financial Ratios on Profitability: An Empirical Analysis of Listed Firms of Cement Sector in Saudi Arabia," Quarterly Journal of Econometrics Research, Conscientia Beam, vol. 1(1), pages 1-12.
    6. Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
    7. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    8. Stefano Ramelli & Alexander F Wagner, 2020. "Feverish Stock Price Reactions to COVID-19," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 9(3), pages 622-655.
    9. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    10. Yingying Fan & Jinchi Lv & Mahrad Sharifvaghefi & Yoshimasa Uematsu, 2020. "IPAD: Stable Interpretable Forecasting with Knockoffs Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1822-1834, December.
    11. Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
    12. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    13. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
    14. Galbraith, John W. & Zinde-Walsh, Victoria, 2020. "Simple and reliable estimators of coefficients of interest in a model with high-dimensional confounding effects," Journal of Econometrics, Elsevier, vol. 218(2), pages 609-632.
    15. Zhang, Dayong & Hu, Min & Ji, Qiang, 2020. "Financial markets under the global pandemic of COVID-19," Finance Research Letters, Elsevier, vol. 36(C).
    16. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    17. Shi, Chengchun & Song, Rui & Chen, Zhao & Li, Runze, 2019. "Linear hypothesis testing for high dimensional generalized linear models," LSE Research Online Documents on Economics 102108, London School of Economics and Political Science, LSE Library.
    18. Jingshen Wang & Xuming He & Gongjun Xu, 2020. "Debiased Inference on Treatment Effect in a High-Dimensional Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 442-454, January.
    19. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    20. Chernozhukov, Victor & Kasahara, Hiroyuki & Schrimpf, Paul, 2021. "Causal impact of masks, policies, behavior on early covid-19 pandemic in the U.S," Journal of Econometrics, Elsevier, vol. 220(1), pages 23-62.
    21. Niels Joachim Gormsen & Ralph S J Koijen & Nikolai Roussanov, 0. "Coronavirus: Impact on Stock Prices and Growth Expectations," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(4), pages 574-597.
    22. N C P Edirisinghe & X Zhang, 2008. "Portfolio selection under DEA-based relative financial strength indicators: case of US industries," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 842-856, June.
    23. Willem Thorbecke, 2020. "The Impact of the COVID-19 Pandemic on the U.S. Economy: Evidence from the Stock Market," JRFM, MDPI, vol. 13(10), pages 1-30, October.
    24. Muhammad Nauman Khan & Imran Khokhar, 2015. "The Effect of Selected Financial Ratios on Profitability: An Empirical Analysis of Listed Firms of Cement Sector in Saudi Arabia," Quarterly Journal of Econometrics Research, Conscientia Beam, vol. 1(1), pages 1-12.
    25. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    26. Ruixuan Rachel Zhou & Liewei Wang & Sihai Dave Zhao, 2020. "Estimation and inference for the indirect effect in high-dimensional linear mediation models," Biometrika, Biometrika Trust, vol. 107(3), pages 573-589.
    27. Viviana Celli, 2022. "Causal mediation analysis in economics: Objectives, assumptions, models," Journal of Economic Surveys, Wiley Blackwell, vol. 36(1), pages 214-234, February.
    28. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    29. Jeffrey L. Callen & Dan Segal, 2004. "Do Accruals Drive Firm‐Level Stock Returns? A Variance Decomposition Analysis," Journal of Accounting Research, Wiley Blackwell, vol. 42(3), pages 527-560, June.
    30. Yingying Fan & Emre Demirkaya & Gaorong Li & Jinchi Lv, 2020. "RANK: Large-Scale Inference With Graphical Nonlinear Knockoffs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 362-379, January.
    31. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    32. Lan Wang & Yichao Wu & Runze Li, 2012. "Quantile Regression for Analyzing Heterogeneity in Ultra-High Dimension," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 214-222, March.
    33. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haowen Bao & Yongmiao Hong & Yuying Sun & Shouyang Wang, 2024. "Sparse Interval-valued Time Series Modeling with Machine Learning," Papers 2411.09452, arXiv.org.
    2. Haoyu Wei & Hengrui Cai & Chengchun Shi & Rui Song, 2024. "On Efficient Inference of Causal Effects with Multiple Mediators," Papers 2401.05517, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2024. "Reprint: Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 239(2).
    2. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    4. Cakici, Nusret & Zaremba, Adam, 2021. "Who should be afraid of infections? Pandemic exposure and the cross-section of stock returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    5. Szczygielski, Jan Jakub & Brzeszczyński, Janusz & Charteris, Ailie & Bwanya, Princess Rutendo, 2022. "The COVID-19 storm and the energy sector: The impact and role of uncertainty," Energy Economics, Elsevier, vol. 109(C).
    6. Michal Bernardelli & Zbigniew Korzeb & Pawel Niedziolka, 2021. "The banking sector as the absorber of the COVID-19 crisis’ economic consequences: perception of WSE investors," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 335-374, June.
    7. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    8. Pagano, Marco & Wagner, Christian & Zechner, Josef, 2023. "Disaster resilience and asset prices," Journal of Financial Economics, Elsevier, vol. 150(2).
    9. Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
    10. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    11. Chen Qiu & Taisuke Otsu, 2022. "Information theoretic approach to high‐dimensional multiplicative models: Stochastic discount factor and treatment effect," Quantitative Economics, Econometric Society, vol. 13(1), pages 63-94, January.
    12. Qiu, Chen & Otsu, Taisuke, 2022. "Information theoretic approach to high dimensional multiplicative models: stochastic discount factor and treatment effect," LSE Research Online Documents on Economics 110494, London School of Economics and Political Science, LSE Library.
    13. Wei, Waverly & Zhou, Yuqing & Zheng, Zeyu & Wang, Jingshen, 2024. "Inference on the best policies with many covariates," Journal of Econometrics, Elsevier, vol. 239(2).
    14. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Ștefan Cristian Gherghina & Daniel Ștefan Armeanu & Camelia Cătălina Joldeș, 2020. "Stock Market Reactions to COVID-19 Pandemic Outbreak: Quantitative Evidence from ARDL Bounds Tests and Granger Causality Analysis," IJERPH, MDPI, vol. 17(18), pages 1-35, September.
    16. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    17. Ľuboš Pástor & M Blair Vorsatz & Jeffrey Pontiff, 0. "Mutual Fund Performance and Flows during the COVID-19 Crisis," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(4), pages 791-833.
    18. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    19. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    20. Sandro Heiniger, 2024. "Data-driven model selection within the matrix completion method for causal panel data models," Papers 2402.01069, arXiv.org.

    More about this item

    Keywords

    Mediation analysis; Penalized least squares; Sparsity; Wald test;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:235:y:2023:i:1:p:166-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.