IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v239y2024i2s0304407623001549.html
   My bibliography  Save this article

Inference on the best policies with many covariates

Author

Listed:
  • Wei, Waverly
  • Zhou, Yuqing
  • Zheng, Zeyu
  • Wang, Jingshen

Abstract

Understanding the impact of the most effective policies or treatments on a response variable of interest is desirable in many empirical works in economics, statistics and other disciplines. Due to the widespread winner’s curse phenomenon, conventional statistical inference assuming that the top policies are chosen independent of the random sample may lead to overly optimistic evaluations of the best policies. In recent years, given the increased availability of large datasets, such an issue can be further complicated when researchers include many covariates to estimate the policy or treatment effects in an attempt to control for potential confounders. In this manuscript, to simultaneously address the above-mentioned issues, we propose a resampling-based procedure that not only lifts the winner’s curse in evaluating the best policies observed in a random sample, but also is robust to the presence of many covariates. The proposed inference procedure yields accurate point estimates and valid frequentist confidence intervals that achieve the exact nominal level as the sample size goes to infinity for multiple best policy effect sizes. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and two empirical studies, evaluating the most effective policies in charitable giving and the most beneficial group of workers in the National Supported Work program.

Suggested Citation

  • Wei, Waverly & Zhou, Yuqing & Zheng, Zeyu & Wang, Jingshen, 2024. "Inference on the best policies with many covariates," Journal of Econometrics, Elsevier, vol. 239(2).
  • Handle: RePEc:eee:econom:v:239:y:2024:i:2:s0304407623001549
    DOI: 10.1016/j.jeconom.2022.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623001549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2024. "Inference on Winners," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(1), pages 305-358.
    2. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    4. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    5. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    6. Cattaneo, Matias D. & Jansson, Michael & Newey, Whitney K., 2018. "Alternative Asymptotics And The Partially Linear Model With Many Regressors," Econometric Theory, Cambridge University Press, vol. 34(2), pages 277-301, April.
    7. Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
    8. John A. List, 2011. "The Market for Charitable Giving," Journal of Economic Perspectives, American Economic Association, vol. 25(2), pages 157-180, Spring.
    9. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    10. Dean Karlan & John A. List, 2007. "Does Price Matter in Charitable Giving? Evidence from a Large-Scale Natural Field Experiment," American Economic Review, American Economic Association, vol. 97(5), pages 1774-1793, December.
    11. Kueck, Jannis & Luo, Ye & Spindler, Martin & Wang, Zigan, 2023. "Estimation and inference of treatment effects with L2-boosting in high-dimensional settings," Journal of Econometrics, Elsevier, vol. 234(2), pages 714-731.
    12. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
    13. Isaiah Andrews & Dillon Bowen & Toru Kitagawa & Adam McCloskey, 2022. "Inference for Losers," AEA Papers and Proceedings, American Economic Association, vol. 112, pages 635-642, May.
    14. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    15. Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
    16. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    17. Koen Jochmans, 2022. "Heteroscedasticity-Robust Inference in Linear Regression Models With Many Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 887-896, April.
    18. Valentin Verdier, 2020. "Estimation and Inference for Linear Models with Two-Way Fixed Effects and Sparsely Matched Data," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 1-16, March.
    19. Fan, Jianqing & Hall, Peter & Yao, Qiwei, 2007. "To How Many Simultaneous Hypothesis Tests Can Normal, Student's t or Bootstrap Calibration Be Applied?," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1282-1288, December.
    20. Brian Claggett & Minge Xie & Lu Tian, 2014. "Meta-Analysis With Fixed, Unknown, Study-Specific Parameters," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1660-1671, December.
    21. Peter Hall & Hugh Miller, 2010. "Bootstrap confidence intervals and hypothesis tests for extrema of parameters," Biometrika, Biometrika Trust, vol. 97(4), pages 881-892.
    22. Xie, Minge & Singh, Kesar & Zhang, Cun-Hui, 2009. "Confidence Intervals for Population Ranks in the Presence of Ties and Near Ties," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 775-788.
    23. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    24. Gary Charness & Dan Levin, 2009. "The Origin of the Winner's Curse: A Laboratory Study," American Economic Journal: Microeconomics, American Economic Association, vol. 1(1), pages 207-236, February.
    25. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    26. James Andreoni & John Miller, 2002. "Giving According to GARP: An Experimental Test of the Consistency of Preferences for Altruism," Econometrica, Econometric Society, vol. 70(2), pages 737-753, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.
    3. Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
    4. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2023. "Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 235(1), pages 166-179.
    5. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    6. Guo, Xu & Li, Runze & Liu, Jingyuan & Zeng, Mudong, 2024. "Reprint: Statistical inference for linear mediation models with high-dimensional mediators and application to studying stock reaction to COVID-19 pandemic," Journal of Econometrics, Elsevier, vol. 239(2).
    7. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    8. Alexandre Belloni & Mingli Chen & Victor Chernozhukov, 2016. "Quantile Graphical Models: Prediction and Conditional Independence with Applications to Systemic Risk," Papers 1607.00286, arXiv.org, revised Oct 2019.
    9. Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
    10. Kuanhao Jiang & Rajarshi Mukherjee & Subhabrata Sen & Pragya Sur, 2022. "A New Central Limit Theorem for the Augmented IPW Estimator: Variance Inflation, Cross-Fit Covariance and Beyond," Papers 2205.10198, arXiv.org, revised Oct 2022.
    11. Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Yuta Koike, 2022. "High-dimensional Data Bootstrap," Papers 2205.09691, arXiv.org.
    12. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    14. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    15. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    16. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    17. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    18. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    19. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    20. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).

    More about this item

    Keywords

    Winner’s curse; High dimensional data; Linear regression; Order statistics;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:239:y:2024:i:2:s0304407623001549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.