Fair Policy Targeting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Noghin, Vladimir D., 2006. "An axiomatization of the generalized Edgeworth-Pareto principle in terms of choice functions," Mathematical Social Sciences, Elsevier, vol. 52(2), pages 210-216, September.
- Dennis Egger & Johannes Haushofer & Edward Miguel & Paul Niehaus & Michael Walker, 2022.
"General Equilibrium Effects of Cash Transfers: Experimental Evidence From Kenya,"
Econometrica, Econometric Society, vol. 90(6), pages 2603-2643, November.
- Dennis Egger & Johannes Haushofer & Edward Miguel & Paul Niehaus & Michael W. Walker, 2019. "General Equilibrium Effects of Cash Transfers: Experimental Evidence from Kenya," NBER Working Papers 26600, National Bureau of Economic Research, Inc.
- Egger, Dennis & Haushofer, Johannes & Miguel, Edward & Niehaus, Paul & Walker, Michael, 2020. "General equilibrium effects of cash transfers: experimental evidence from Kenya," Department of Economics, Working Paper Series qt7b84w7hh, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
- Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
- Timothy B. Armstrong & Shu Shen, 2013.
"Inference on Optimal Treatment Assignments,"
Cowles Foundation Discussion Papers
1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
- Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2014.
- Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927, Cowles Foundation for Research in Economics, Yale University.
- Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2022.
"Multiway Cluster Robust Double/Debiased Machine Learning,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1046-1056, June.
- Harold D. Chiang & Kengo Kato & Yukun Ma & Yuya Sasaki, 2019. "Multiway Cluster Robust Double/Debiased Machine Learning," Papers 1909.03489, arXiv.org, revised Mar 2020.
- Baqun Zhang & Anastasios A. Tsiatis & Eric B. Laber & Marie Davidian, 2012. "A Robust Method for Estimating Optimal Treatment Regimes," Biometrics, The International Biometric Society, vol. 68(4), pages 1010-1018, December.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2024.
"Inference on Winners,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(1), pages 305-358.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2018. "Inference on winners," CeMMAP working papers CWP31/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2019. "Inference on Winners," NBER Working Papers 25456, National Bureau of Economic Research, Inc.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2020. "Inference on winners," CeMMAP working papers CWP43/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Isaiah Andrews & Toru Kitagawa & Adam McCloskey, 2018. "Inference on winners," CeMMAP working papers CWP73/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ashesh Rambachan & Jon Kleinberg & Sendhil Mullainathan & Jens Ludwig, 2020. "An Economic Approach to Regulating Algorithms," NBER Working Papers 27111, National Bureau of Economic Research, Inc.
- Keisuke Hirano & Jack R. Porter, 2009.
"Asymptotics for Statistical Treatment Rules,"
Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
- Hirano, Keisuke & Porter, Jack, 2006. "Asymptotics for statistical treatment rules," MPRA Paper 1173, University Library of Munich, Germany.
- Dehejia, Rajeev H., 2005.
"Program evaluation as a decision problem,"
Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
- Rajeev Dehejia, 1999. "Program Evaluation as a Decision Problem," NBER Working Papers 6954, National Bureau of Economic Research, Inc.
- Eric Mbakop & Max Tabord‐Meehan, 2021.
"Model Selection for Treatment Choice: Penalized Welfare Maximization,"
Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
- Eric Mbakop & Max Tabord-Meehan, 2016. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Papers 1609.03167, arXiv.org, revised Dec 2020.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Newey, Whitney K, 1994.
"The Asymptotic Variance of Semiparametric Estimators,"
Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
- Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
- Newey, W.K., 1991. "The Asymptotic Variance of Semiparametric Estimators," Working papers 583, Massachusetts Institute of Technology (MIT), Department of Economics.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Joppe de Ree & Karthik Muralidharan & Menno Pradhan & Halsey Rogers, 2018.
"Double for Nothing? Experimental Evidence on an Unconditional Teacher Salary Increase in Indonesia,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 993-1039.
- De Ree,Joppe Jaitze & Muralidharan,Karthik & Pradhan,Menno Prasad & Rogers,F. Halsey, 2017. "Double for nothing ? experimental evidence on an unconditional teacher salary increase in Indonesia," Policy Research Working Paper Series 8264, The World Bank.
- Feldman, Allan M & Kirman, Alan, 1974. "Fairness and Envy," American Economic Review, American Economic Association, vol. 64(6), pages 995-1005, December.
- Manski, Charles F. & Thompson, T. Scott, 1989.
"Estimation of best predictors of binary response,"
Journal of Econometrics, Elsevier, vol. 40(1), pages 97-123, January.
- Manski, C.F. & Thompson, S.T., 1989. "Estimation Of Best Predictors Of Benary Response," Working papers 367, Wisconsin Madison - Social Systems.
- Karthik Muralidharan & Abhijeet Singh & Alejandro J. Ganimian, 2019.
"Disrupting Education? Experimental Evidence on Technology-Aided Instruction in India,"
American Economic Review, American Economic Association, vol. 109(4), pages 1426-1460, April.
- Muralidharan, K. & Singh, A. & Ganimian, A. J., 2016. "Disrupting education? Experimental evidence on technology-aided instruction in India," Working Paper 467377, Harvard University OpenScholar.
- Karthik Muralidharan & Abhijeet Singh & Alejandro J. Ganimian, 2017. "Disrupting Education? Experimental Evidence on Technology-Aided Instruction in India," CESifo Working Paper Series 6328, CESifo.
- Karthik Muralidharan & Abhijeet Singh & Alejandro J. Ganimian, 2016. "Disrupting Education? Experimental Evidence on Technology-Aided Instruction in India," NBER Working Papers 22923, National Bureau of Economic Research, Inc.
- Bhattacharya, Debopam & Dupas, Pascaline, 2012.
"Inferring welfare maximizing treatment assignment under budget constraints,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
- Debopam Bhattacharya & Pascaline Dupas, 2008. "Inferring Welfare Maximizing Treatment Assignment under Budget Constraints," NBER Working Papers 14447, National Bureau of Economic Research, Inc.
- Varian, Hal R., 1976.
"Two problems in the theory of fairness,"
Journal of Public Economics, Elsevier, vol. 5(3-4), pages 249-260.
- H. R. Varian, 1975. "Two Problems in the Theory of Fairness," Working papers 163, Massachusetts Institute of Technology (MIT), Department of Economics.
- Charles F. Manski, 2004.
"Statistical Treatment Rules for Heterogeneous Populations,"
Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers 03/03, Institute for Fiscal Studies.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers CWP03/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Tetenov, Aleksey, 2012.
"Statistical treatment choice based on asymmetric minimax regret criteria,"
Journal of Econometrics, Elsevier, vol. 166(1), pages 157-165.
- Aleksey Tetenov, 2009. "Statistical Treatment Choice Based on Asymmetric Minimax Regret Criteria," Carlo Alberto Notebooks 119, Collegio Carlo Alberto.
- S. A. Murphy, 2003. "Optimal dynamic treatment regimes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 331-355, May.
- Elizabeth Lyons & Laurina Zhang, 2017. "The Impact of Entrepreneurship Programs on Minorities," American Economic Review, American Economic Association, vol. 107(5), pages 303-307, May.
- Elliott, Graham & Lieli, Robert P., 2013. "Predicting binary outcomes," Journal of Econometrics, Elsevier, vol. 174(1), pages 15-26.
- Chen, Le-Yu & Lee, Sokbae, 2018.
"Best subset binary prediction,"
Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
- Le-Yu Chen & Sokbae Lee, 2016. "Best Subset Binary Prediction," Papers 1610.02738, arXiv.org, revised May 2018.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Best subset binary prediction," CeMMAP working papers CWP50/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Le-Yu Chen & Sokbae (Simon) Lee, 2017. "Best subset binary prediction," CeMMAP working papers 50/17, Institute for Fiscal Studies.
- Pascaline Dupas, 2014.
"Short‐Run Subsidies and Long‐Run Adoption of New Health Products: Evidence From a Field Experiment,"
Econometrica, Econometric Society, vol. 82(1), pages 197-228, January.
- Pascaline Dupas, 2010. "Short-Run Subsidies and Long-Run Adoption of New Health Products: Evidence from a Field Experiment," Working Papers id:2498, eSocialSciences.
- Pascaline Dupas, 2010. "Short-Run Subsidies and Long-Run Adoption of New Health Products: Evidence from a Field Experiment," NBER Working Papers 16298, National Bureau of Economic Research, Inc.
- Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
- Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
- Xin Zhou & Nicole Mayer-Hamblett & Umer Khan & Michael R. Kosorok, 2017. "Residual Weighted Learning for Estimating Individualized Treatment Rules," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 169-187, January.
- Guido W. Imbens, 2004.
"Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review,"
The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
- Guido W. Imbens, 2003. "Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review," NBER Technical Working Papers 0294, National Bureau of Economic Research, Inc.
- Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
- Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
- Athey, Susan & Wager, Stefan, 2017. "Efficient Policy Learning," Research Papers 3506, Stanford University, Graduate School of Business.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, November.
- Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
- Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Ashesh Rambachan, 2018. "Algorithmic Fairness," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 22-27, May.
- Stoye, Jörg, 2012. "Minimax regret treatment choice with covariates or with limited validity of experiments," Journal of Econometrics, Elsevier, vol. 166(1), pages 138-156.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
- Eric Mbakop & Max Tabord‐Meehan, 2021.
"Model Selection for Treatment Choice: Penalized Welfare Maximization,"
Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
- Eric Mbakop & Max Tabord-Meehan, 2016. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Papers 1609.03167, arXiv.org, revised Dec 2020.
- Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
- Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
- Huber, Martin, 2019.
"An introduction to flexible methods for policy evaluation,"
FSES Working Papers
504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Toru Kitagawa & Shosei Sakaguchi & Aleksey Tetenov, 2021. "Constrained Classification and Policy Learning," Papers 2106.12886, arXiv.org, revised Jul 2023.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers 10/15, Institute for Fiscal Studies.
- Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023.
"Offline Multi-Action Policy Learning: Generalization and Optimization,"
Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
- Zhou, Zhengyuan & Athey, Susan & Wager, Stefan, 2018. "Offline Multi-Action Policy Learning: Generalization and Optimization," Research Papers 3734, Stanford University, Graduate School of Business.
- Zhengyuan Zhou & Susan Athey & Stefan Wager, 2018. "Offline Multi-Action Policy Learning: Generalization and Optimization," Papers 1810.04778, arXiv.org, revised Nov 2018.
- Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
- Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
- Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2022.
"Functional Sequential Treatment Allocation,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1311-1323, September.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2018. "Functional Sequential Treatment Allocation," Papers 1812.09408, arXiv.org, revised Aug 2020.
- Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
- Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Oct 2024.
- Manski, Charles F., 2023.
"Probabilistic prediction for binary treatment choice: With focus on personalized medicine,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine," NBER Working Papers 29358, National Bureau of Economic Research, Inc.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with focus on personalized medicine," Papers 2110.00864, arXiv.org.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2005.12395. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.