IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.01449.html
   My bibliography  Save this paper

A Double Machine Learning Approach to Combining Experimental and Observational Data

Author

Listed:
  • Harsh Parikh
  • Marco Morucci
  • Vittorio Orlandi
  • Sudeepa Roy
  • Cynthia Rudin
  • Alexander Volfovsky

Abstract

Experimental and observational studies often lack validity due to untestable assumptions. We propose a double machine learning approach to combine experimental and observational studies, allowing practitioners to test for assumption violations and estimate treatment effects consistently. Our framework tests for violations of external validity and ignorability under milder assumptions. When only one of these assumptions is violated, we provide semiparametrically efficient treatment effect estimators. However, our no-free-lunch theorem highlights the necessity of accurately identifying the violated assumption for consistent treatment effect estimation. Through comparative analyses, we show our framework's superiority over existing data fusion methods. The practical utility of our approach is further exemplified by three real-world case studies, underscoring its potential for widespread application in empirical research.

Suggested Citation

  • Harsh Parikh & Marco Morucci & Vittorio Orlandi & Sudeepa Roy & Cynthia Rudin & Alexander Volfovsky, 2023. "A Double Machine Learning Approach to Combining Experimental and Observational Data," Papers 2307.01449, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2307.01449
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.01449
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    2. Susan Athey & Raj Chetty & Guido Imbens, 2020. "Combining Experimental and Observational Data to Estimate Treatment Effects on Long Term Outcomes," Papers 2006.09676, arXiv.org.
    3. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    4. Blackwell, Matthew, 2014. "A Selection Bias Approach to Sensitivity Analysis for Causal Effects," Political Analysis, Cambridge University Press, vol. 22(2), pages 169-182, April.
    5. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    6. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    7. Erin Hartman & Richard Grieve & Roland Ramsahai & Jasjeet S. Sekhon, 2015. "From sample average treatment effect to population average treatment effect on the treated: combining experimental with observational studies to estimate population treatment effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 757-778, June.
    8. AmirEmad Ghassami & Alan Yang & David Richardson & Ilya Shpitser & Eric Tchetgen Tchetgen, 2022. "Combining Experimental and Observational Data for Identification and Estimation of Long-Term Causal Effects," Papers 2201.10743, arXiv.org, revised Apr 2022.
    9. de Luna Xavier & Johansson Per, 2014. "Testing for the Unconfoundedness Assumption Using an Instrumental Assumption," Journal of Causal Inference, De Gruyter, vol. 2(2), pages 187-199, September.
    10. Glynn, Adam N. & Quinn, Kevin M., 2010. "An Introduction to the Augmented Inverse Propensity Weighted Estimator," Political Analysis, Cambridge University Press, vol. 18(1), pages 36-56, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melody Y Huang & Harsh Parikh, 2024. "Towards Generalizing Inferences from Trials to Target Populations," Papers 2402.17042, arXiv.org, revised May 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    2. Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
    3. Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).
    4. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    5. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    6. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    7. Heigle, Julia & Pfeiffer, Friedhelm, 2019. "An analysis of selected labor market outcomes of college dropouts in Germany: A machine learning estimation approach. Research report," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 222378.
    8. Aur'elien Sallin, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Papers 2110.08807, arXiv.org, revised Feb 2022.
    9. Wei, Waverly & Zhou, Yuqing & Zheng, Zeyu & Wang, Jingshen, 2024. "Inference on the best policies with many covariates," Journal of Econometrics, Elsevier, vol. 239(2).
    10. Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024. "Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations," Journal of Econometrics, Elsevier, vol. 240(2).
    11. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    14. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    15. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    16. Yechan Park & Yuya Sasaki, 2024. "Matching $\leq$ Hybrid $\leq$ Difference in Differences," Papers 2411.07952, arXiv.org.
    17. Elek, Péter & Bíró, Anikó, 2021. "Regional differences in diabetes across Europe – regression and causal forest analyses," Economics & Human Biology, Elsevier, vol. 40(C).
    18. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    19. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    20. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.01449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.