Targeted undersmoothing
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016.
"Inference in High-Dimensional Panel Models With an Application to Gun Control,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in high dimensional panel models with an application to gun control," CeMMAP working papers 50/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in High Dimensional Panel Models with an Application to Gun Control," Papers 1411.6507, arXiv.org.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2014. "Inference in high dimensional panel models with an application to gun control," CeMMAP working papers CWP50/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alberto Abadie & Joshua Angrist & Guido Imbens, 2002.
"Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings,"
Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
- Alberto Abadie & Joshua Angrist & Guido Imbens, 1999. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Working papers 99-16, Massachusetts Institute of Technology (MIT), Department of Economics.
- Hansen, Christian & Kozbur, Damian, 2014. "Instrumental variables estimation with many weak instruments using regularized JIVE," Journal of Econometrics, Elsevier, vol. 182(2), pages 290-308.
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016.
"Double machine learning for treatment and causal parameters,"
CeMMAP working papers
CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers 49/16, Institute for Fiscal Studies.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Leeb, Hannes & Pötscher, Benedikt M., 2008.
"Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?,"
Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
- Hannes Leeb & Benedikt M. Potscher, 2003. "Can One Estimate the Conditional Distribution of Post-Model-Selection Estimators?," Cowles Foundation Discussion Papers 1444, Cowles Foundation for Research in Economics, Yale University.
- Leeb, Hannes & Pötscher, Benedikt M., 2005. "Can One Estimate the Unconditional Distribution of Post-Model-Selection Estimators ?," MPRA Paper 72, University Library of Munich, Germany.
- Newey, Whitney K, 1994.
"The Asymptotic Variance of Semiparametric Estimators,"
Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
- Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
- Newey, W.K., 1991. "The Asymptotic Variance of Semiparametric Estimators," Working papers 583, Massachusetts Institute of Technology (MIT), Department of Economics.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013.
"Program evaluation with high-dimensional data,"
CeMMAP working papers
CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2015. "Program evaluation with high-dimensional data," CeMMAP working papers 55/15, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers CWP33/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers 57/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2015. "Program evaluation with high-dimensional data," CeMMAP working papers CWP55/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2014. "Program evaluation with high-dimensional data," CeMMAP working papers 33/14, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers 77/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP57/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
- Damian Kozbur, 2013. "Inference in additively separable models with a high-dimensional set of conditioning variables," ECON - Working Papers 284, Department of Economics - University of Zurich, revised Apr 2018.
- Damian Kozbur, 2017. "Sharp convergence rates for forward regression in high-dimensional sparse linear models," ECON - Working Papers 253, Department of Economics - University of Zurich, revised Apr 2018.
- Victor Chernozhukov & Iván Fernández‐Val & Ye Luo, 2018.
"The Sorted Effects Method: Discovering Heterogeneous Effects Beyond Their Averages,"
Econometrica, Econometric Society, vol. 86(6), pages 1911-1938, November.
- Victor Chernozhukov & Ivan Fernandez-Val & Ye Luo, 2015. "The sorted effects method: discovering heterogeneous effects beyond their averages," CeMMAP working papers 74/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Ye Luo, 2015. "The sorted effects method: discovering heterogeneous effects beyond their averages," CeMMAP working papers CWP74/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Ye Luo, 2015. "The Sorted Effects Method: Discovering Heterogeneous Effects Beyond Their Averages," Papers 1512.05635, arXiv.org, revised May 2018.
- van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
- Qi Li & Jeffrey Scott Racine, 2006. "Density Estimation, from Nonparametric Econometrics: Theory and Practice," Introductory Chapters, in: Nonparametric Econometrics: Theory and Practice, Princeton University Press.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 649-688, August.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Valid Post-Selection and Post-Regularization Inference: An Elementary, General Approach," Papers 1501.03430, arXiv.org, revised Aug 2015.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "Valid post-selection and post-regularization inference: An elementary, general approach," CeMMAP working papers 36/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2016. "Valid post-selection and post-regularization inference: An elementary, general approach," CeMMAP working papers CWP36/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012.
"Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors,"
Papers
1212.6906, arXiv.org, revised Jan 2018.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers 76/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," CeMMAP working papers CWP76/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Susan Athey & Guido Imbens & Thai Pham & Stefan Wager, 2017.
"Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges,"
American Economic Review, American Economic Association, vol. 107(5), pages 278-281, May.
- Susan Athey & Guido Imbens & Thai Pham & Stefan Wager, 2017. "Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges," Papers 1702.01250, arXiv.org.
- Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
- Wang, Hansheng, 2009. "Forward Regression for Ultra-High Dimensional Variable Screening," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1512-1524.
- Athey, Susan & Wager, Stefan, 2017. "Efficient Policy Learning," Research Papers 3506, Stanford University, Graduate School of Business.
- Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Ivan Fernandez-Val, 2017.
"Generic machine learning inference on heterogenous treatment effects in randomized experiments,"
CeMMAP working papers
61/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Ivan Fernandez-Val, 2017. "Generic machine learning inference on heterogenous treatment effects in randomized experiments," CeMMAP working papers CWP61/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Iv'an Fern'andez-Val, 2017.
"Fisher-Schultz Lecture: Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, with an Application to Immunization in India,"
Papers
1712.04802, arXiv.org, revised Oct 2023.
- Victor Chernozhukov & Mert Demirer & Esther Duflo & Iván Fernández-Val, 2023. "Fischer-Schultz Lecture: Generic Machine Learning Inference on Heterogenous Treatment Effects in Randomized Experiments, with an Application to Immunization in India," Working Papers hal-04238425, HAL.
- Jean-Pierre Dubé & Sanjog Misra, 2017. "Personalized Pricing and Consumer Welfare," NBER Working Papers 23775, National Bureau of Economic Research, Inc.
- Damian Kozbur, 2013. "Inference in additively separable models with a high-dimensional set of conditioning variables," ECON - Working Papers 284, Department of Economics - University of Zurich, revised Apr 2018.
- Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Damian Kozbur, 2017.
"Testing-Based Forward Model Selection,"
American Economic Review, American Economic Association, vol. 107(5), pages 266-269, May.
- Damian Kozbur, 2015. "Testing-Based Forward Model Selection," ECON - Working Papers 283, Department of Economics - University of Zurich, revised Apr 2018.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-Dimensional Econometrics and Regularized GMM,"
Papers
1806.01888, arXiv.org, revised Jun 2018.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015.
"Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments,"
American Economic Review, American Economic Association, vol. 105(5), pages 486-490, May.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers 02/15, Institute for Fiscal Studies.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-Selection and Post-Regularization Inference in Linear Models with Many Controls and Instruments," Papers 1501.03185, arXiv.org.
- Victor Chernozhukov & Christian Hansen & Martin Spindler, 2015. "Post-selection and post-regularization inference in linear models with many controls and instruments," CeMMAP working papers CWP02/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jelena Bradic & Victor Chernozhukov & Whitney K. Newey & Yinchu Zhu, 2019. "Minimax Semiparametric Learning With Approximate Sparsity," Papers 1912.12213, arXiv.org, revised Aug 2022.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022.
"Automatic Debiased Machine Learning of Causal and Structural Effects,"
Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2018. "Automatic Debiased Machine Learning of Causal and Structural Effects," Papers 1809.05224, arXiv.org, revised Oct 2022.
- Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022.
"Locally Robust Semiparametric Estimation,"
Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org, revised Aug 2020.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers 31/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers CWP31/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2018. "Locally robust semiparametric estimation," CeMMAP working papers CWP30/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Damian Kozbur, 2013. "Inference in additively separable models with a high-dimensional set of conditioning variables," ECON - Working Papers 284, Department of Economics - University of Zurich, revised Apr 2018.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016.
"Double machine learning for treatment and causal parameters,"
CeMMAP working papers
49/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey, 2016. "Double machine learning for treatment and causal parameters," CeMMAP working papers CWP49/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Damian Kozbur, 2020. "Analysis of Testing‐Based Forward Model Selection," Econometrica, Econometric Society, vol. 88(5), pages 2147-2173, September.
- Susan Athey & Julie Tibshirani & Stefan Wager, 2016.
"Generalized Random Forests,"
Papers
1610.01271, arXiv.org, revised Apr 2018.
- Athey, Susan & Tibshirani, Julie & Wager, Stefan, 2017. "Generalized Random Forests," Research Papers 3575, Stanford University, Graduate School of Business.
- A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017.
"Program Evaluation and Causal Inference With High‐Dimensional Data,"
Econometrica, Econometric Society, vol. 85, pages 233-298, January.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fern'andez-Val & Christian Hansen, 2013. "Program Evaluation and Causal Inference with High-Dimensional Data," Papers 1311.2645, arXiv.org, revised Jan 2018.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers CWP13/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers 13/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
- Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020.
"lassopack: Model selection and prediction with regularized regression in Stata,"
Stata Journal, StataCorp LP, vol. 20(1), pages 176-235, March.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2019. "lassopack: Model selection and prediction with regularized regression in Stata," Papers 1901.05397, arXiv.org.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E, 2019. "lassopack: Model Selection and Prediction with Regularized Regression in Stata," IZA Discussion Papers 12081, Institute of Labor Economics (IZA).
- Shi, Zhentao & Huang, Jingyi, 2023. "Forward-selected panel data approach for program evaluation," Journal of Econometrics, Elsevier, vol. 234(2), pages 512-535.
More about this item
Keywords
model selection; sparsity; dense functionals; hypothesis testing; sensitivity analysis;All these keywords.
JEL classification:
- C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2018-05-07 (Econometrics)
- NEP-ORE-2018-05-07 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zur:econwp:282. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Severin Oswald (email available below). General contact details of provider: https://edirc.repec.org/data/seizhch.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.