IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i1p100-109.html
   My bibliography  Save this article

On doubly robust estimation of the hazard difference

Author

Listed:
  • Oliver Dukes
  • Torben Martinussen
  • Eric J. Tchetgen Tchetgen
  • Stijn Vansteelandt

Abstract

The estimation of conditional treatment effects in an observational study with a survival outcome typically involves fitting a hazards regression model adjusted for a high‐dimensional covariate. Standard estimation of the treatment effect is then not entirely satisfactory, as the misspecification of the effect of this covariate may induce a large bias. Such misspecification is a particular concern when inferring the hazard difference, because it is difficult to postulate additive hazards models that guarantee non‐negative hazards over the entire observed covariate range. We therefore consider a novel class of semiparametric additive hazards models which leave the effects of covariates unspecified. The efficient score under this model is derived. We then propose two different estimation approaches for the hazard difference (and hence also the relative chance of survival), both of which yield estimators that are doubly robust. The approaches are illustrated using simulation studies and data on right heart catheterization and mortality from the SUPPORT study.

Suggested Citation

  • Oliver Dukes & Torben Martinussen & Eric J. Tchetgen Tchetgen & Stijn Vansteelandt, 2019. "On doubly robust estimation of the hazard difference," Biometrics, The International Biometric Society, vol. 75(1), pages 100-109, March.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:100-109
    DOI: 10.1111/biom.12943
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12943
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel O. Scharfstein, 2002. "Estimation of the failure time distribution in the presence of informative censoring," Biometrika, Biometrika Trust, vol. 89(3), pages 617-634, August.
    2. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    3. Sally Picciotto & Miguel A. Hernán & John H. Page & Jessica G. Young & James M. Robins, 2012. "Structural Nested Cumulative Failure Time Models to Estimate the Effects of Interventions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 886-900, September.
    4. Eric J. Tchetgen Tchetgen & James M. Robins & Andrea Rotnitzky, 2010. "On doubly robust estimation in a semiparametric odds ratio model," Biometrika, Biometrika Trust, vol. 97(1), pages 171-180.
    5. S. Vansteelandt & T. Martinussen & E. J. Tchetgen Tchetgen, 2014. "On adjustment for auxiliary covariates in additive hazard models for the analysis of randomized experiments," Biometrika, Biometrika Trust, vol. 101(1), pages 237-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kara E. Rudolph & Nicholas Williams & Iván Díaz, 2023. "Efficient and flexible estimation of natural direct and indirect effects under intermediate confounding and monotonicity constraints," Biometrics, The International Biometric Society, vol. 79(4), pages 3126-3139, December.
    2. Shaun Seaman & Oliver Dukes & Ruth Keogh & Stijn Vansteelandt, 2020. "Adjusting for time‐varying confounders in survival analysis using structural nested cumulative survival time models," Biometrics, The International Biometric Society, vol. 76(2), pages 472-483, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Zhiqiang, 2019. "On doubly robust estimation for logistic partially linear models," Statistics & Probability Letters, Elsevier, vol. 155(C), pages 1-1.
    2. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    5. Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
    6. Martin Huber, 2019. "An introduction to flexible methods for policy evaluation," Papers 1910.00641, arXiv.org.
    7. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    8. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    9. Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
    10. Richard J. Cook & Jerald F. Lawless, 2020. "Failure time studies with intermittent observation and losses to follow‐up," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1035-1063, December.
    11. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    12. Hansen, Christian & Liao, Yuan, 2019. "The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications," Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
    13. Oyenubi, Adeola & Kollamparambil, Umakrishnan, 2023. "Does noncompliance with COVID-19 regulations impact the depressive symptoms of others?," Economic Modelling, Elsevier, vol. 120(C).
    14. Elek, Péter & Bíró, Anikó, 2021. "Regional differences in diabetes across Europe – regression and causal forest analyses," Economics & Human Biology, Elsevier, vol. 40(C).
    15. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    16. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Aug 2024.
    17. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    18. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    19. Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021. "A unified framework for efficient estimation of general treatment models," Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
    20. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:100-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.