IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v221y2021i2p644-654.html
   My bibliography  Save this article

Overlap in observational studies with high-dimensional covariates

Author

Listed:
  • D’Amour, Alexander
  • Ding, Peng
  • Feller, Avi
  • Lei, Lihua
  • Sekhon, Jasjeet

Abstract

Estimating causal effects under exogeneity hinges on two key assumptions: unconfoundedness and overlap. Researchers often argue that unconfoundedness is more plausible when more covariates are included in the analysis. Less discussed is the fact that covariate overlap is more difficult to satisfy in this setting. In this paper, we explore the implications of overlap in observational studies with high-dimensional covariates and formalize curse-of-dimensionality argument, suggesting that these assumptions are stronger than investigators likely realize. Our key innovation is to explore how strict overlap restricts global discrepancies between the covariate distributions in the treated and control populations. Exploiting results from information theory, we derive explicit bounds on the average imbalance in covariate means under strict overlap and show that these bounds become more restrictive as the dimension grows large. We discuss how these implications interact with assumptions and procedures commonly deployed in observational causal inference, including sparsity and trimming.

Suggested Citation

  • D’Amour, Alexander & Ding, Peng & Feller, Avi & Lei, Lihua & Sekhon, Jasjeet, 2021. "Overlap in observational studies with high-dimensional covariates," Journal of Econometrics, Elsevier, vol. 221(2), pages 644-654.
  • Handle: RePEc:eee:econom:v:221:y:2021:i:2:p:644-654
    DOI: 10.1016/j.jeconom.2019.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407620302694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2019.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    2. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "High-Dimensional Methods and Inference on Structural and Treatment Effects," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
    3. Christoph Rothe, 2017. "Robust Confidence Intervals for Average Treatment Effects Under Limited Overlap," Econometrica, Econometric Society, vol. 85, pages 645-660, March.
    4. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    5. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    6. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    7. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    8. van der Laan Mark J. & Gruber Susan, 2010. "Collaborative Double Robust Targeted Maximum Likelihood Estimation," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-71, May.
    9. S Yang & P Ding, 2018. "Asymptotic inference of causal effects with observational studies trimmed by the estimated propensity scores," Biometrika, Biometrika Trust, vol. 105(2), pages 487-493.
    10. Shakeeb Khan & Denis Nekipelov, 2013. "On Uniform Inference in Nonlinear Models with Endogeneity," Working Papers 13-16, Duke University, Department of Economics.
    11. Matias Busso & John DiNardo & Justin McCrary, 2014. "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 885-897, December.
    12. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Moving the Goalposts: Addressing Limited Overlap in the Estimation of Average Treatment Effects by Changing the Estimand," NBER Technical Working Papers 0330, National Bureau of Economic Research, Inc.
    13. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    14. Timothy B. Armstrong & Michal Kolesár, 2021. "Finite‐Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Econometrica, Econometric Society, vol. 89(3), pages 1141-1177, May.
    15. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    16. Wei Luo & Yeying Zhu & Debashis Ghosh, 2017. "On estimating regression-based causal effects using sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 104(1), pages 51-65.
    17. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    18. P. Ding & T.J. Vanderweele & J. M. Robins, 2017. "Instrumental variables as bias amplifiers with general outcome and confounding," Biometrika, Biometrika Trust, vol. 104(2), pages 291-302.
    19. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    20. Ben B. Hansen, 2008. "The prognostic analogue of the propensity score," Biometrika, Biometrika Trust, vol. 95(2), pages 481-488.
    21. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    22. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "Supplementary Appendix for "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls"," Papers 1305.6099, arXiv.org, revised Jun 2013.
    23. Wooldridge, Jeffrey M., 2016. "Should instrumental variables be used as matching variables?," Research in Economics, Elsevier, vol. 70(2), pages 232-237.
    24. Xinwei Ma & Jingshen Wang, 2018. "Robust Inference Using Inverse Probability Weighting," Papers 1810.11397, arXiv.org, revised May 2019.
    25. Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ay, Jean-Sauveur & Le Gallo, Julie, 2021. "The Signaling Values of Nested Wine Names," Working Papers 321851, American Association of Wine Economists.
    2. Sallin, Aurelién, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Economics Working Paper Series 2109, University of St. Gallen, School of Economics and Political Science.
    3. Chen, Xiaohong & Liu, Ying & Ma, Shujie & Zhang, Zheng, 2024. "Causal inference of general treatment effects using neural networks with a diverging number of confounders," Journal of Econometrics, Elsevier, vol. 238(1).
    4. Uehleke, Reinhard & Petrick, Martin & Hüttel, Silke, 2022. "Evaluations of agri-environmental schemes based on observational farm data: The importance of covariate selection," Land Use Policy, Elsevier, vol. 114(C).
    5. Benjamin Lu & Eli Ben-Michael & Avi Feller & Luke Miratrix, 2023. "Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 420-453, August.
    6. Daniele Ballinari & Nora Bearth, 2024. "Improving the Finite Sample Performance of Double/Debiased Machine Learning with Propensity Score Calibration," Papers 2409.04874, arXiv.org.
    7. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    8. Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
    9. Federica Mascolo & Nora Bearth & Fabian Muny & Michael Lechner & Jana Mareckova, 2024. "The Heterogeneous Effects of Active Labour Market Policies in Switzerland," Papers 2410.23322, arXiv.org.
    10. Chen, Jiafeng & Ritzwoller, David M., 2023. "Semiparametric estimation of long-term treatment effects," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Lundberg, Ian & Brand, Jennie E. & Jeon, Nanum, 2022. "Researcher reasoning meets computational capacity: Machine learning for social science," SocArXiv s5zc8, Center for Open Science.
    12. Antonio R. Linero, 2023. "Prior and posterior checking of implicit causal assumptions," Biometrics, The International Biometric Society, vol. 79(4), pages 3153-3164, December.
    13. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    14. Sokbae Lee & Martin Weidner, 2021. "Bounding Treatment Effects by Pooling Limited Information across Observations," Papers 2111.05243, arXiv.org, revised Dec 2023.
    15. Aur'elien Sallin, 2021. "Estimating returns to special education: combining machine learning and text analysis to address confounding," Papers 2110.08807, arXiv.org, revised Feb 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    2. Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.
    3. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    4. Timothy B. Armstrong & Michal Kolesár, 2021. "Finite‐Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Econometrica, Econometric Society, vol. 89(3), pages 1141-1177, May.
    5. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    6. Xinwei Ma & Jingshen Wang, 2018. "Robust Inference Using Inverse Probability Weighting," Papers 1810.11397, arXiv.org, revised May 2019.
    7. David Cheng & Abhishek Chakrabortty & Ashwin N. Ananthakrishnan & Tianxi Cai, 2020. "Estimating average treatment effects with a double‐index propensity score," Biometrics, The International Biometric Society, vol. 76(3), pages 767-777, September.
    8. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 61/13, Institute for Fiscal Studies.
    9. Sokbae Lee & Martin Weidner, 2021. "Bounding Treatment Effects by Pooling Limited Information across Observations," Papers 2111.05243, arXiv.org, revised Dec 2023.
    10. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    11. Christoph Rothe, 2017. "Robust Confidence Intervals for Average Treatment Effects Under Limited Overlap," Econometrica, Econometric Society, vol. 85, pages 645-660, March.
    12. Strittmatter, Anthony & Wunsch, Conny, 2021. "The Gender Pay Gap Revisited with Big Data: Do Methodological Choices Matter?," Working papers 2021/05, Faculty of Business and Economics - University of Basel.
    13. Michael Lechner & Anthony Strittmatter, 2019. "Practical procedures to deal with common support problems in matching estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
    14. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
    15. Joseph Antonelli & Matthew Cefalu & Nathan Palmer & Denis Agniel, 2018. "Doubly robust matching estimators for high dimensional confounding adjustment," Biometrics, The International Biometric Society, vol. 74(4), pages 1171-1179, December.
    16. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
    17. Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
    18. Pengzhou Wu & Kenji Fukumizu, 2021. "$\beta$-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap," Papers 2110.05225, arXiv.org.
    19. Dongcheng Zhang & Kunpeng Zhang, 2020. "Weighting-Based Treatment Effect Estimation via Distribution Learning," Papers 2012.13805, arXiv.org, revised May 2023.
    20. Phillip Heiler, 2020. "Efficient Covariate Balancing for the Local Average Treatment Effect," Papers 2007.04346, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:221:y:2021:i:2:p:644-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.